

Sequencing BTKi vs BCL2- Frontline and relapsed

Javier Pinilla-Ibarz, MD, PhD.

Senior Member Head of Lymphoma section and Director of Immunotherapy Malignant Hematology Department

Disclosures

 Javier Pinilla-Ibarz, MD, PhD: Consultant – Janssen/Pharmacyclics, Abbvie, AstraZeneca, Beigene, Lilly, Novartis, BMS, Merck; speaker's bureau – Janssen/Pharmacyclics, Abbvie, AstraZeneca, Beigene, Lilly

Learning Objectives

- Evaluate recent clinical trial data and real-world evidence for targeted therapies in CLL/SLL, such as BTK and BCL-2 inhibitors
- Identify effective risk stratification techniques to personalize and select targeted therapies based on unique patient characteristics

How Do We Define High-Risk at Dx in 2024 in the Era of Targeted Therapy?

Before targeted therapy

Del 17p
Del 11q
IgHV unmutated
IgHV subset 2
Complex karyotype

On targeted therapy in RR after CIT

Del 17p

Del 11q

IgHV unmutated

IgHV Subset 2

(IGLV3-21R110)

Complex karyotype

On targeted therapy front line

Del 17p

Del 11q

IgHV unmutated

IgHV Subset 2

(IGLV3-21R110)

Complex karyotype

NCCN Guidelines Version 3.2024 Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma

NCCN Guidelines Index
Table of Contents
Discussion

SUGGESTED TREATMENT REGIMENS^{a,b,c,d} CLL/SLL Without del(17p)/*TP53* Mutation (alphabetical by category)

	FIRST-LINE THERAPY ^e	
Preferred Regimens	Other Recommended Regimens	Useful in Certain Circumstances
 Acalabrutinib^{f,g,*} ± obinutuzumab (category 1) Venetoclax^{f,h} + obinutuzumab (category 1) Zanubrutinib^{f,g,*} (category 1) 	 Ibrutinib f,g,i,* (category 1) Ibrutinibf,g,* + obinutuzumab (category 2B) Ibrutinibf,g,* + rituximab (category 2B) Ibrutinibf,g,* + venetoclaxf,h (category 2B) 	 Consider for IGHV-mutated CLL in patients aged <65 y without significant comorbidities FCR (fludarabine, cyclophosphamide, rituximab)^{k,l} Consider when BTKi and venetoclax are not available or contraindicated or rapid disease debulking needed Bendamustine^m + anti-CD20 mAb^{n,o} Obinutuzumab ± chlorambucil^p High-dose methylprednisolone (HDMP) + anti-CD20 mAbⁿ (category 2B; category 3 for patients <65 y without significant comorbidities)

NCCN Guidelines Version 3.2024 Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma

NCCN Guidelines Index
Table of Contents
Discussion

SUGGESTED TREATMENT REGIMENS^{a,b,c,d} CLL/SLL Without del(17p)/TP53 Mutation

S	SECOND-LINE OR THIRD-LINE THERAPY ^e								
Preferred Regimens • Acalabrutinib ^{f,g,q,*} (category 1) • Venetoclax ^{f,h} + rituximab (category 1) • Zanubrutinib ^{f,g,q,*} (category 1)	Other Recommended Regimens • Ibrutinib ^{f,g,i,*} (category 1) • Venetoclax ^{f,h} • Ibrutinib ^{f,g,*} + venetoclax ^{f,h} (category 2B)	Useful in Certain Circumstances • For relapse after a period of remission (if previously used) ▶ Venetoclax ^{f,h} ± anti-CD20 mAb (venetoclax + obinutuzumab preferred) • Resistance or intolerance to prior covalent BTKi therapy ▶ Pirtobrutinib ^{f,**}							

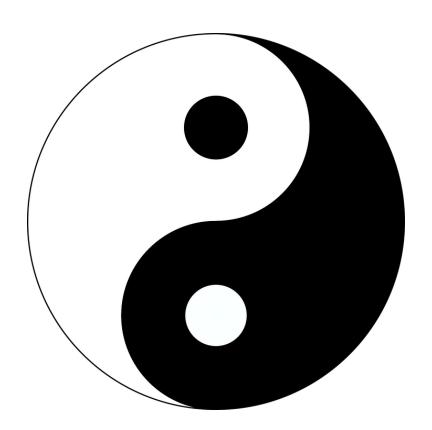
THERAPY FOR RELAPSED OR REFRACTORY DISEASE AFTER PRIOR BTKi- AND VENETOCLAX-BASED REGIMENS^e

Other Recommended Regimens (alphabetical order by category)

- Chimeric antigen receptor (CAR) T-cell therapy
- ▶ Lisocabtagene maraleucel (CD19-directed)^r
- Small-molecule inhibitors^f
- **▶** Duvelisib
- ▶ Idelalisib^s ± rituximab
- → Pirtobrutinib** (if not previously given)
- → Ibrutinib^{g,*} + venetoclax^h (category 2B)
- FCR^{j,I}
- Lenalidomide^t ± rituximab
- Obinutuzumab
- Bendamustine^m + rituximab^o (category 2B for patients ≥65 y or patients <65 y with significant comorbidities)
- HDMP + anti-CD20 mAbⁿ (category 2B)

Sequencing Targeted CLL Therapies

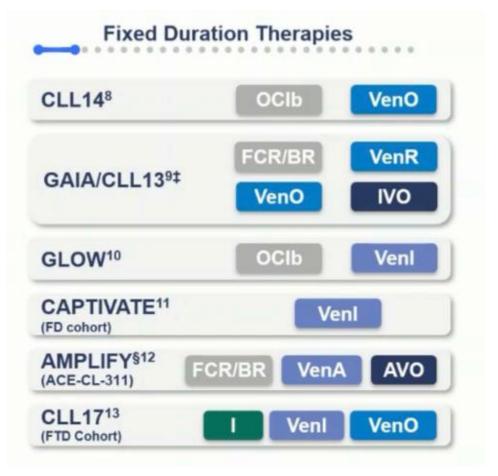
cBTKi	BTKi Alternative cBTKi if intolerance BCL2i+CD20 ncBTKi												
cBTKi		Д	Alternativ	e cBTKi	if intoler	ance	ncBTKi			BCL2i+	CD20		
BCL2i+CD20						BCL2i+	CD20			сВТКі			
BCL2i+CD20						сВТКі					ncBTKi		
Years 1	2	3	4	5	6	7	8	9	10	11	12	13	14
BCL2i+cBTKi						cBTKi					ncBTKi		
BCL2i+cBTKi						BCL2i+c	BTK				ncBTKi		


cBTKi = covalent BTKi ncBTKi = non-covalent

Double exposed vs double refractory

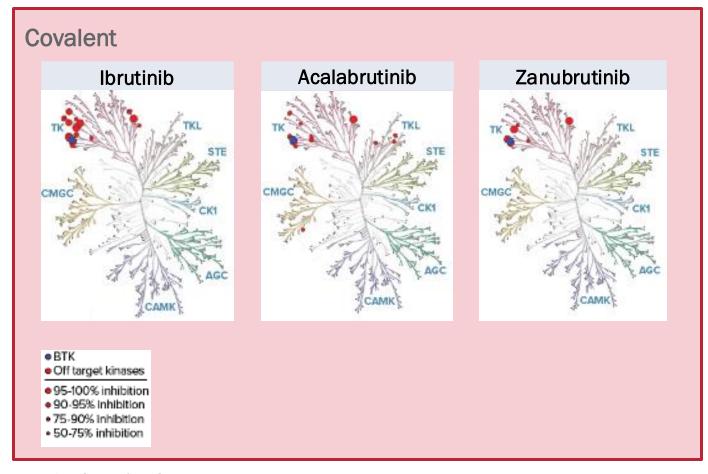
- Exposed ≠ refractory
- Refractory= progression on treatment

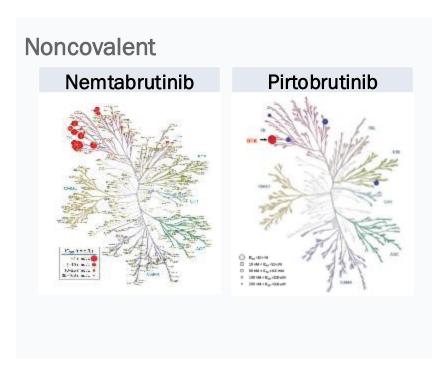
The Dilemma Continues between Long-Term Therapy vs Fixed Duration


Key Learning Points

- Testing for genetic factors only predicts time to treatment but no response to therapy in first line
- At this time, no significant differences between treatment until progression vs limited therapy approaches
- Patient preference should be accounted for in final treatment decisions

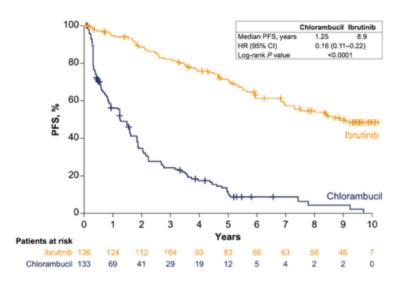
Continuous Therapy vs Fixed Duration



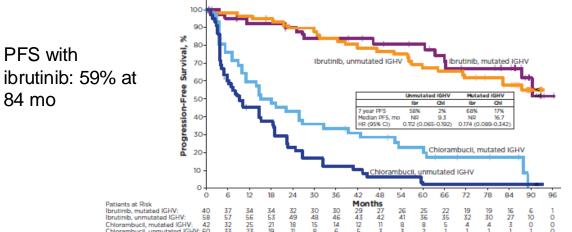


Shanafelt TD, et al. New Engl J Med. 2019; 381:435-443. Hillman P, et al. Lancet Oncol, 2023,24:535-552. Moreno C, et al. Lancet Oncol. 2019,20:43-56. Woyach JA, et al. Blood, 2021;138:639. Barr PM, et al. Blood Adv. 2022;6:3400-3450. Sharman JP, et al. Leukemia. 2022;36:1171-1175. Tam CS, et al. Lancet Oncol. 2022;23:1031-1043. AlSawaf O, et al. Nat Commun. 2023;14:2147. Eichhorst B, et al. N Eng J Med. 2023;338:1739-1754. Kater AP, et al. NEJM Evid. 2022;1:711. Tam CS, et al. Blood. 2022;139:3278-3289. National Institute of Health (NIH). Accessed Sept 25, 2024. https://clinicaltrials.gov/study/NCT04608318; NCT03836261

Several Covalent BTKi to Consider with Differences in BTKi Specificity, MOA, and Potential for Off-Target Effects



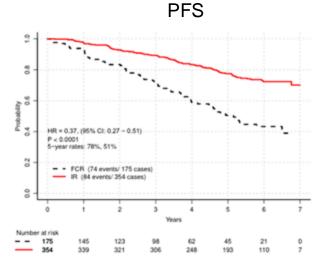
MOA = mechanism of action.

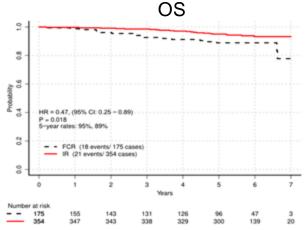


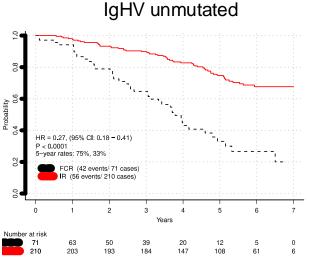
RESONATE-2: Median PFS Reached at 8.9 Years

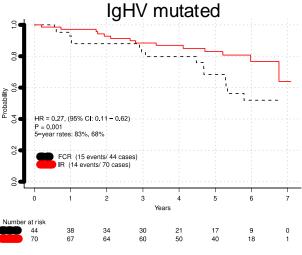
90 - 80 - 70 - 70 - 60 - 60 - 60 - 60 - 60 - 6			lbru	tinib, witho	ut del(11d	brutinib	, with de	l(11q)		٩.	
<u>e</u> 50 -	1 '					del(11q)		rt del(11q)	-		
<u> </u>	- 1	100	7	year PFS	1br 52%	Chl	1 br 61%	CN 12%		1	
<u>.</u> 40 -	- 4	- Hg		edian PFS, n		9.0	NR	18.4			
S		1		R (95% CI)		0.010-0.107)	0.193 (0.	128-0.289)		بسبا	
50 - 50 - 50 - 50 - 50 - 50 - 50 - 50 -		٦,	Ť	-	-	٦.	Chlora	nbucil, with	out del(11q)	
10 -		٦	Chloran	nbucil, with	del(11q)					ኒ	
0 0	6 12	18 24	30 3	5 42 Mon		60	66	72 78	84	90	96
Patients at Risk (brutinib, without del(11q): 101	94 89	87 80	76 7.	5 70	64	61 57	55	48 47	43	13	0
Ibrutinib, with del(11q): 29	29 29	29 28	28 2	7 25	24	23 20	18	16 16	12	2	0
Chlorambucil, without del(11q): 96 Chlorambucil, with del(11q): 25	64 54 15 8	45 35 6 3	29 29 1 1		0	15 12	6	5 5	4	1	0

	Ibrutinib n=136
Median duration of ibrutinib treatment, years	6.2
Continuing ibrutinib on study, n (%)	57 (42)
Discontinued ibrutinib, n (%) AE PD Death Withdrawal by patient Investigator decision	32 (24) 18 (13) 12 (9) 9 (7) 7 (5)

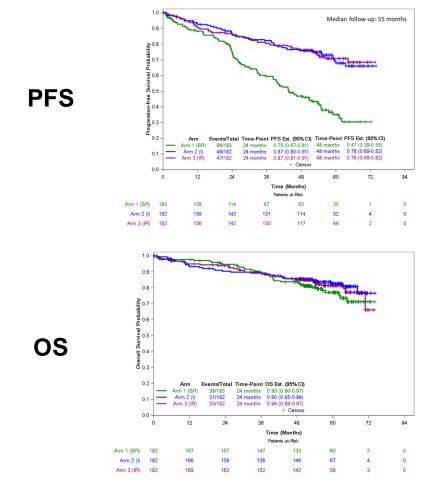

PFS = progression free survival; AE = adverse event; PD = progressive disease.

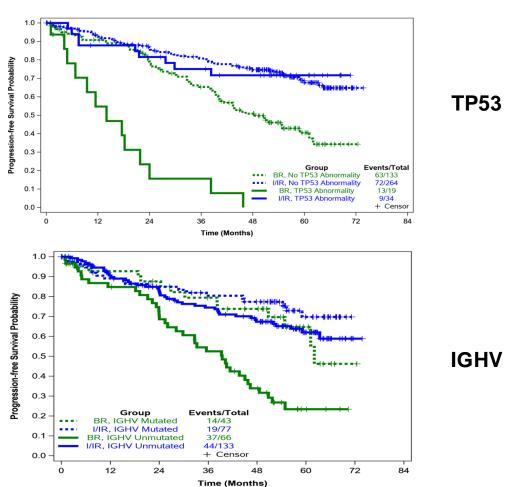

Barr PM, et al. *Blood Adv.* 2022;6(11):3440-3450. Burger J, et al. Presented at: European Hematology Association (EHA); June 13, 2024; Madrid, Spain. P1841.



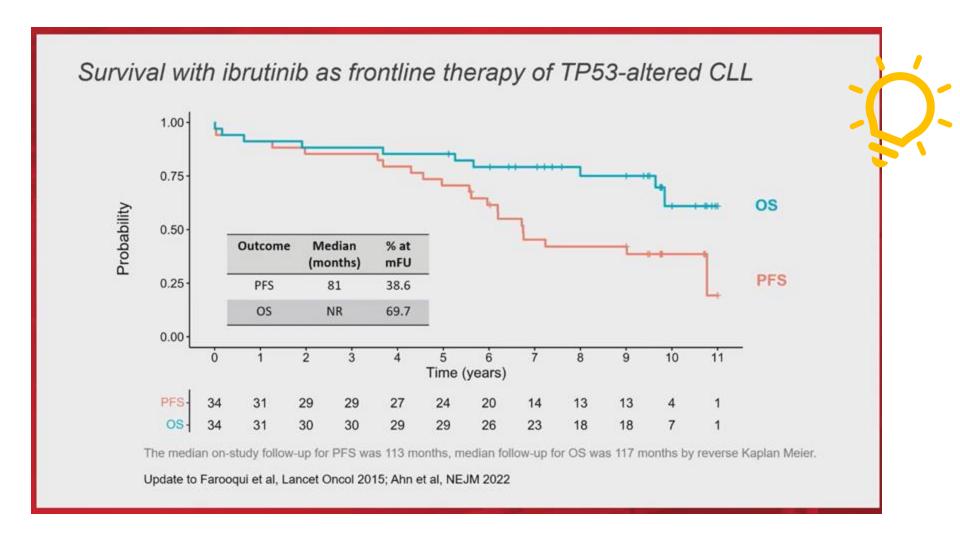

E1912: 5 Years Updated PFS, OS by IGHV Status

Reason for Discontinuation	All Patients Who Started IR N=352
Progression or death	37 (10.5%)
Adverse event or complication	77 (21.9%)
Other reason*	24 (6.8%)



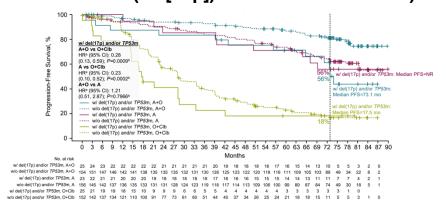


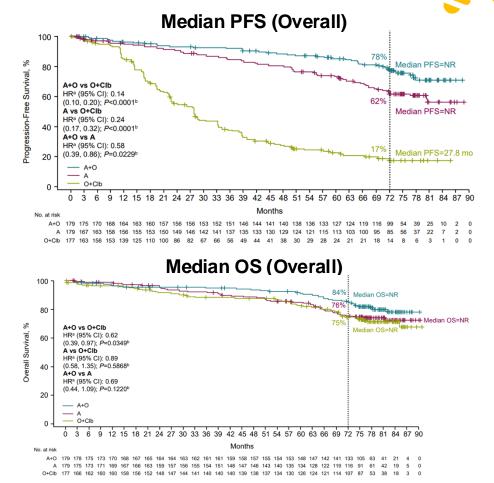
A041202: First-Line Ibrutinib ± Rituximab vs Bendamustine + Rituximab in Older Patients with CLL/SLL



PFS and OS in TP53 Altered, Treatment-Naïve CLL

- OS at 117
 months (~10
 years) was
 69.7%
- mPFS was 81 months (~7 years)

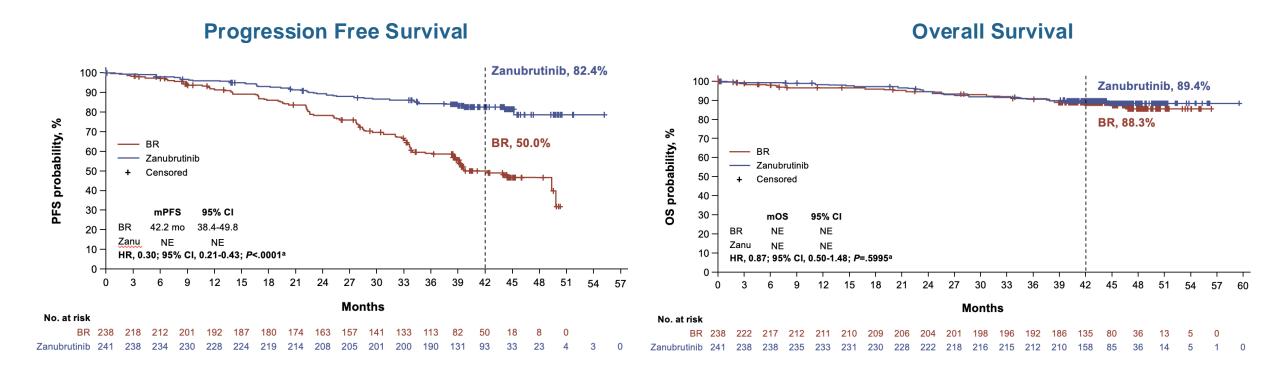




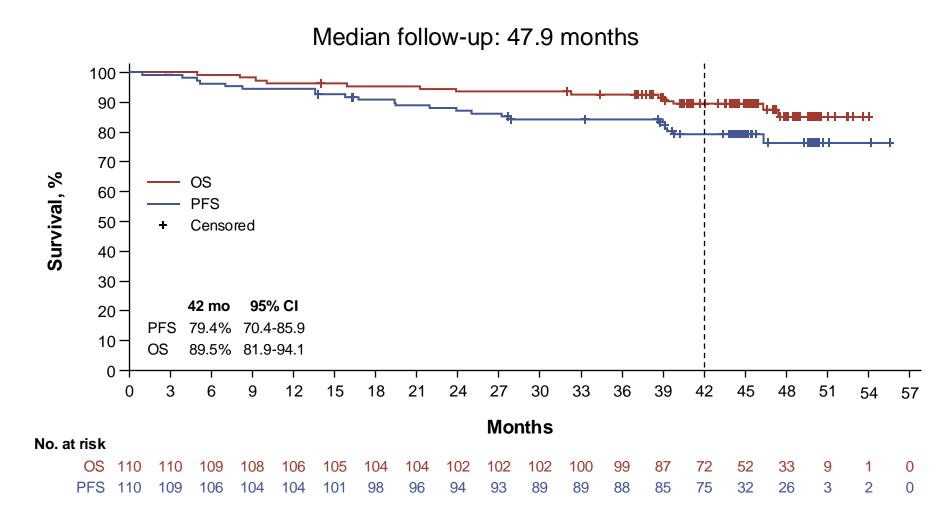
ELEVATE-TN: 6-Year Follow-Up Results-

Study Design TN CLL (N=535) Key inclusion criteria Primary endpoint $A^a + O^b$ PFS (IRC-assessed): A+O vs O+Clb Age ≥65 years, or >18 to <65 Secondary/other endpoints Creatinine clearance 30–69 mL/min PFS (IRC-assessed): A vs O+Clb (by Cockcroft-Gault equation) PFS (INV-assessed) TN CLL requiring treatment per ORR (IRC- and INV-assessed) iwCLL 2008 criteria6 TTNT ECOG PS ≤2 OS Key exclusion criteria uMRD Ob + Clbb Significant cardiovascular Safety 1:1:1 Stratification Crossover from O+Clb to A was allowed after IRC-confirmed progression del(17p), yes vs no ECOG PS 0-1 vs 2 Note: After interim analysis, PFS assessments were by investigator only.3 Geographic region All analyses are ad-hoc and P-values are descriptive.

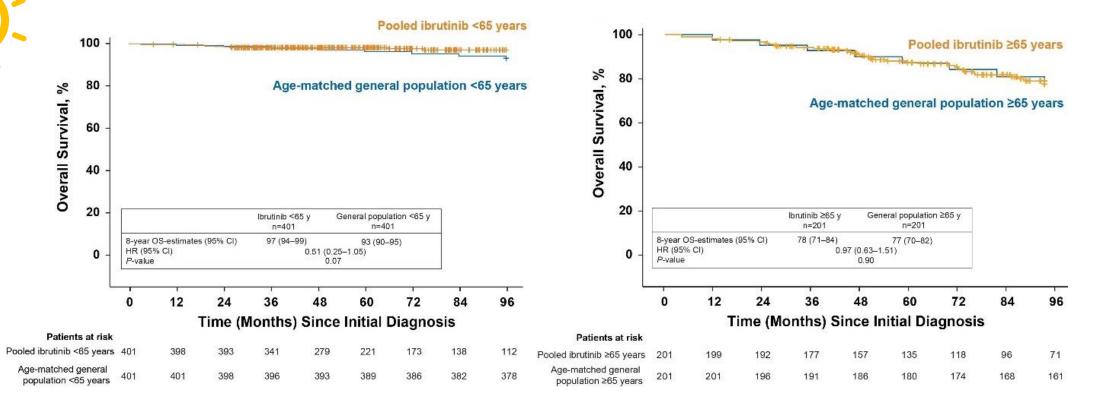
Median PFS (del[17p]) and/or TP53 Mutation)



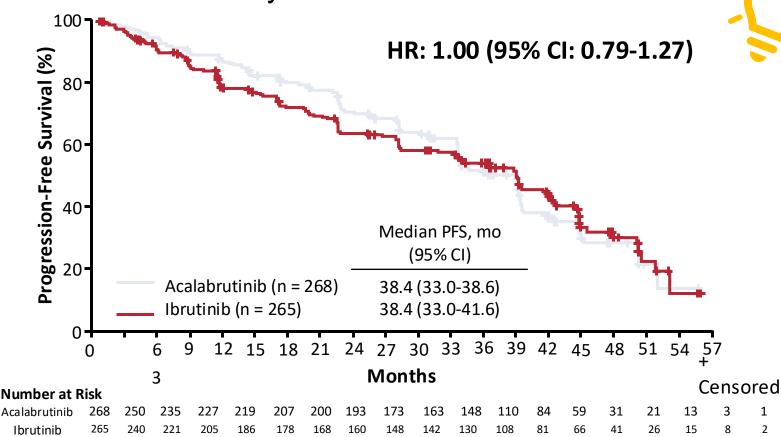
ECOG = Eastern Cooperative Oncology Group; IRC = independent review committee; INV = investigator; ORR = objective response rate; TTNT = time to next treatment; uMRD = undetectable minimal residual disease.


SEQUOIA Cohort 1: PFS and OS in Patients without del(17p)

Median follow-up: 43.7 months



SEQUOIA Cohort 1: PFS and OS in Patients with del(17p)

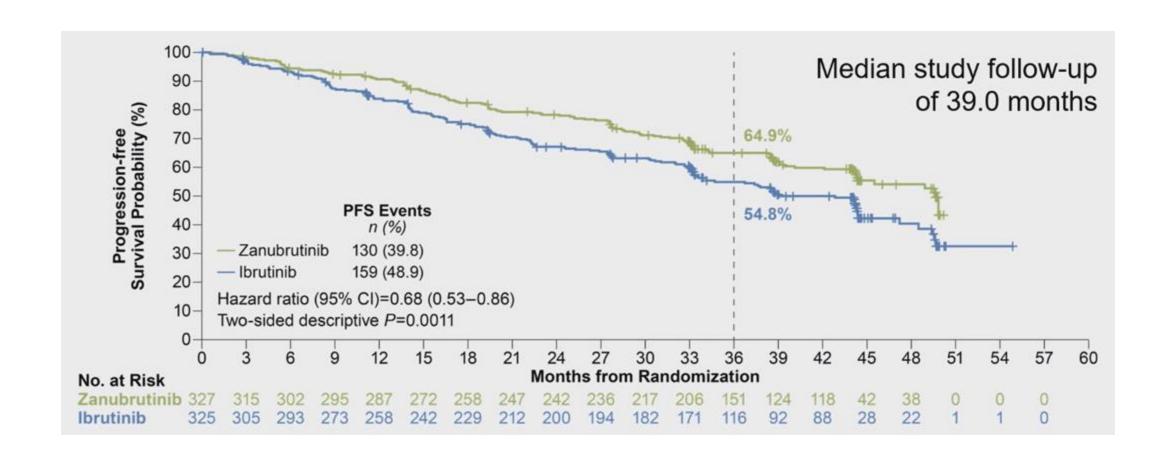

Patients with CLL Treated with Continuous BTKi Are Living Longer, therefore QoL Becomes Paramount when Selecting Treatment

ELEVATE-RR: Noninferiority Met on IRC-Assessed PFS

Noninferiority met on IRC-assessed PFS

Median follow-up: 41 months

	Acalabrutinib (n = 268)	Ibrutinib (n = 265)
Events, n (%) Death PD	143 (53.4) 22 (8.2) 121 (45.1)	136 (51.3) 28 (10.6) 108 (40.8)
Censored, n (%)	125 (46.6)	129 (48.7)
PFS (95% CI), % 12 months 24 months 36 months	86.7 (81.8-90.3) 70.9 (64.8-76.1) 51.4 (44.7-57.8)	78.8 (73.1-83.4) 64.5 (58.1-70.2) 53.8 (47.0-60.1)


Noninferiority achieved if upper bound of the 95% CI of HR is less than the prespecified NI margin of 1.429

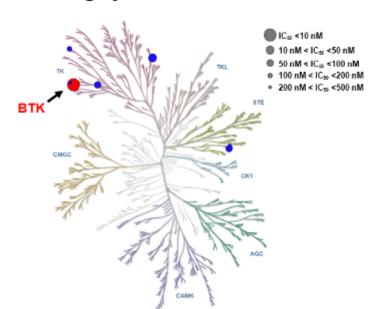
ELEVATE-RR: AEs of Clinical Interest

AE n (0/)	Acalabrutir	nib (n = 266)	Ibrutinib (n = 263)			
AE, n (%)	Any Grade	Grade ≥3	Any Grade	Grade ≥3		
Cardiac events - Atrial fibrillation/flutter - Ventricular arrhythmias	64 (24.1) 25 (9.4) 0	23 (8.6) 13 (4.9) 0	79 (30.0) 42 (16.0) 3 (1.1)	25 (9.5) 10 (3.8) 1 (0.4)		
Bleeding events • Major bleeding events	101 (38.0) 12 (4.5)	10 (3.8) 10 (3.8)	135 (51.3) 14 (5.3)	12 (4.6) 12 (4.6)		
Hypertension	25 (9.4)	11 (4.1)	61 (23.2)	24 (9.1)		
Infections	208 (78.2)	82 (30.8)	214 (81.4)	79 (30.0)		
ILD/pneumonitis	7 (2.6)	1 (0.4)	17 (6.5)	2 (0.8)		
SPMs, excluding NMSC	24 (9.0)	16 (6.0)	20 (7.6)	14 (5.3)		

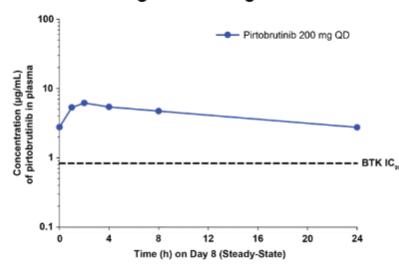
ALPINE: Zanubrutinib Sustains PFS Benefit at 36 Mo

AEs of Special Interest Occurring in ≥ 2 Patients

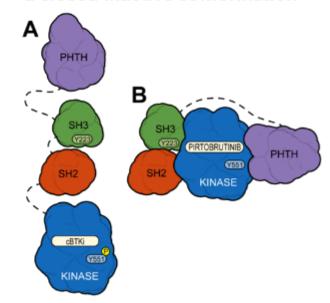
	Zanub (n=3		lbrutinib (n=324)		
	Any Grade	Grade ≥3	Any Grade	Grade ≥3	
Infection	264 (81.5)	115 (35.5)	260 (80.2)	111 (34.3)	
Opportunistic Infections	8 (2.5)	6 (1.9)	13 (4.0)	5 (1.5)	
COVID-19 Related ^b	145 (44.8)	56 (17.3)	105 (32.4)	38 (11.7)	
Bleeding	142 (43.8)	12 (3.7)	144 (44.4)	13 (4.0)	
Major Hemorrhage	13 (4.0)	12 (3.7)	16 (4.9)	13 (4.0)	
Hypertension	86 (26.5)	53 (16.4)	80 (24.7)	47 (14.5)	
Atrial fibrillation/flutter	22 (6.8)	10 (3.1)	53 (16.4)	16 (4.9)	
Anemia	53 (16.4)	7 (2.2)	59 (18.2)	11 (3.4)	
Neutropenia	100 (30.9)	72 (22.2)	94 (29.0)	72 (22.2)	
Thrombocytopenia	43 (13.3)	12 (3.7)	53 (16.4)	19 (5.9)	
Second primary malignancies	46 (14.2)	26 (8.0)	52 (16.0)	19 (5.9)	


^aPooled MedDRA preferred terms.

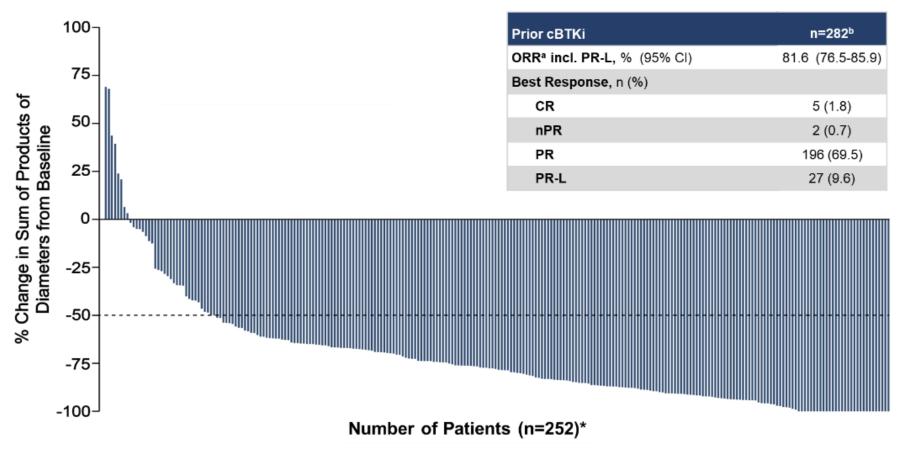
blncludes preferred terms of COVID-19, COVID-19 pneumonia, and suspected COVID-19.



Pirtobrutinib Is a Highly Selective, Non-Covalent (Reversible) BTK Inhibitor

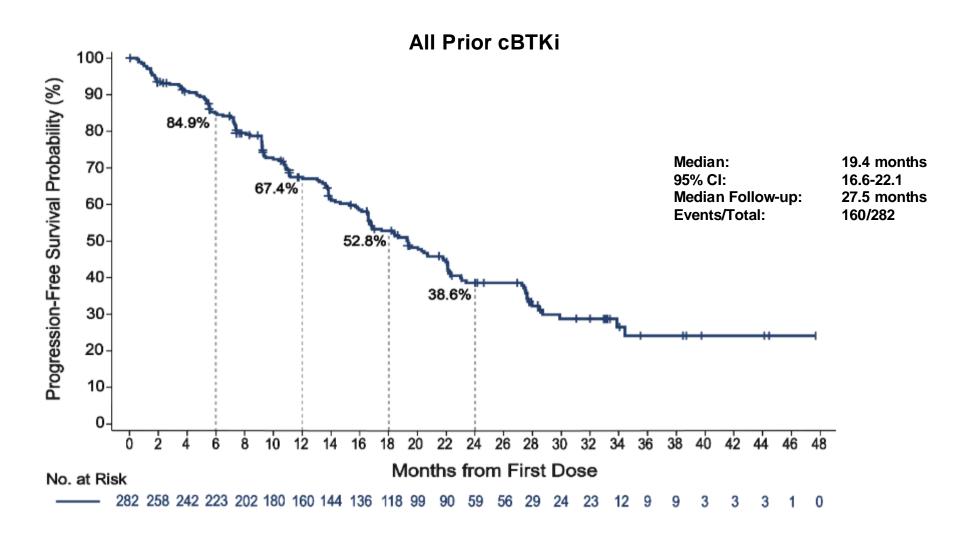


Plasma exposures exceeded BTK IC₉₀ throughout dosing interval


Pirtobrutinib may stabilize/maintain BTK in a closed inactive conformation⁷

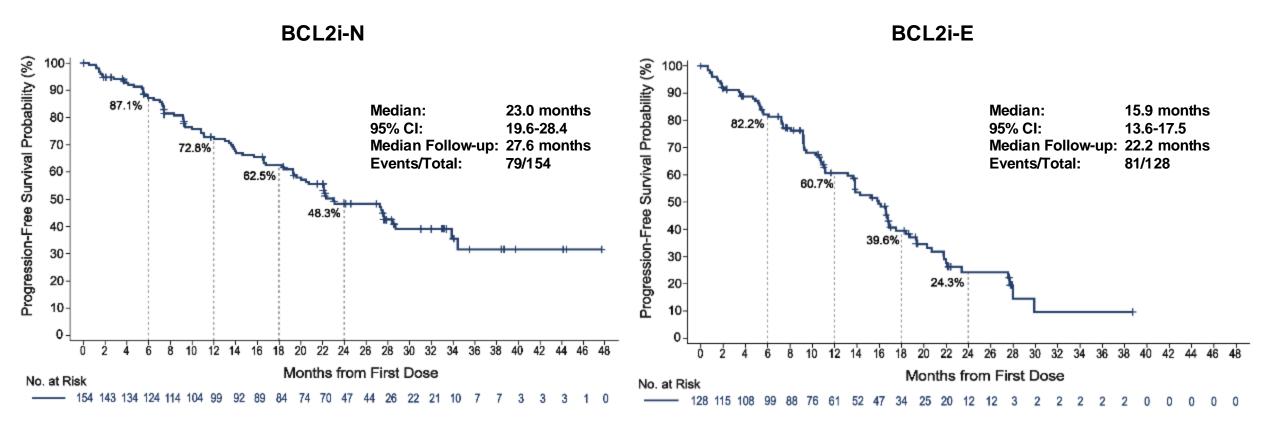
- Inhibits both WT and C481-mutant BTK with equal low nM potency
- Steady state plasma exposure corresponding to 96% BTK target inhibition and a half-life of about 20 hours
- In contrast to cBTKi (A), pirtobrutinib (B) appears to stabilize BTK in a closed, inactive conformation, blocking access to upstream kinases and phosphorylation of Y551, thus inhibiting scaffolding interactions that support kinase-independent BTK signaling

Pirtobrutinib Efficacy in All Patients with CLL/SLL Who Received Prior cBTKi



Data of patients with baseline and at least one evaluable post baseline tumor measurement. *Data for 30/282 patients are not shown in the waterfall plot due to no measurable target lesions identified by CT at baseline, discontinuation prior to first response assessment, or lack of adequate imaging in follow-up. aORR including PR-L is the number of patients with best response of PR-L or better divided by the total number of patients; 14 patients with a best response of not evaluable (NE) are included in the denominator. Post-cBTKi patients included a subgroup of 19 patients with one prior line of cBTKi-containing therapy and second line therapy of pirtobrutinib, who had an ORR including PR-L of 89.5% (95% CI: 66.9-98.7). Response status per iwCLL 2018 based on IRC assessment.

Woyach JA, et al. Presented at: ASH 2023; December 9, 2023; San Diego, CA. 325.



Pirtobrutinib PFS in Patients with Prior cBTKi

Pirtobrutinib PFS with Prior cBTKi, with or without Prior BCL2i

Pirtobrutinib Safety Profile of Patients Who Received Prior cBTKi

	Treatment-Emergent AEs in Patients with CLL/SLL (n=282)							
Adverse Event	All Cause AE	All Cause AEs, (≥20%), %						
	Any Grade	Grade ≥3	Any Grade	Grade ≥3				
Fatigue	36.9	1.8	3.5	0.0				
Neutropenia ^{b,c}	34.4	28.4	19.5	15.2				
Diarrhea	28.4	0.4	7.8	0.0				
Cough	27.3	0.0	1.8	0.0				
Contusion	26.2	0.0	17.4	0.0				
Covid-19	25.9	4.6	0.7	0.0				
Dyspnea	22.3	2.1	0.7	0.4				
Nausea	22.0	0.0	3.5	0.0				
Abdominal pain	21.3	1.8	2.1	0.4				
AEs of Interest ^a	Any Grade	Grade ≥3	Any Grade	Grade ≥3				
Infectionsd	74.1	30.9	12.8	4.3				
Bruisinge	30.1	0.0	19.1	0.0				
Rash ^f	24.5	1.1	5.7	0.4				
Arthralgia	22.7	1.4	4.3	0.0				
Hemorrhageg	13.5	2.1	4.6	1.1				
Hypertension	14.2	4.3	3.5	0.4				
Atrial Fibrillation/Flutterh,i	4.6	1.8	1.4	0.7				

Median time on treatment was 18.7 months (prior cBTKi), 24.3 months (BCL2i-N) and 15.3 months (BCL2i-E)

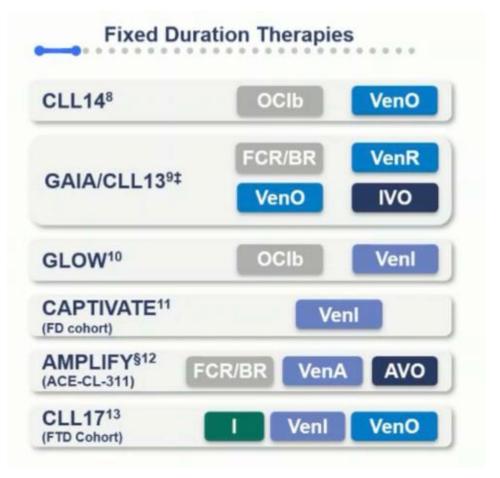
11 (3.9%; 9 BCL2i-N, 2 BCL2i-E) patients had treatment-related AEs leading to pirtobrutinib dose reduction

7 (2.5%; 4 BCL2i-N, 3 BCL2i-E) patients had treatment-related AEs leading to pirtobrutinib discontinuation

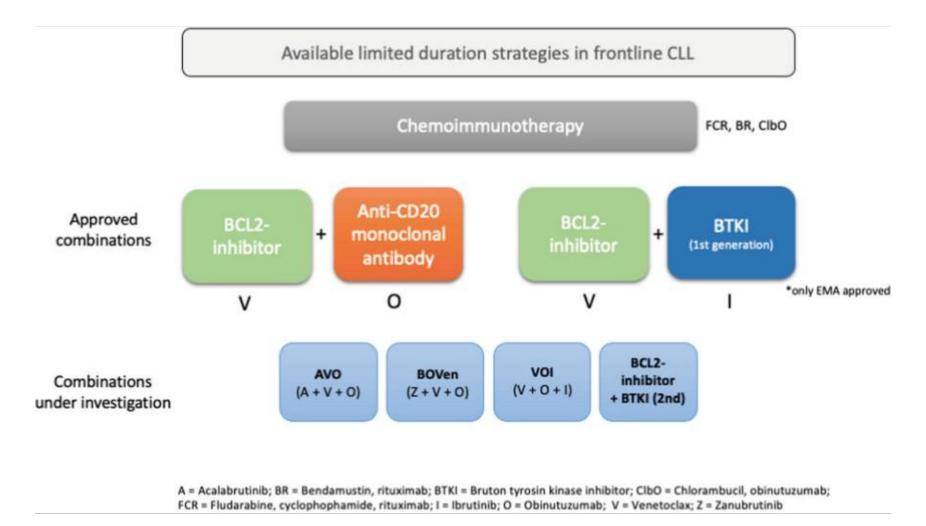
Safety profiles of BCL2i-N and BCL2i-E subgroups were similar

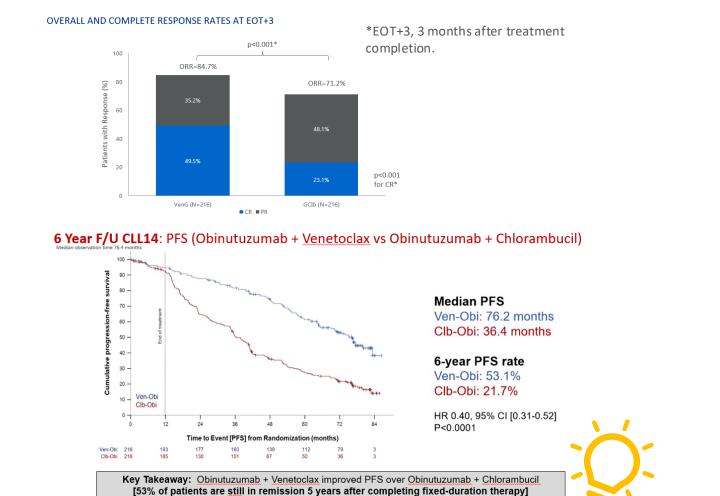
^aAEs of interest are those that were previously associated with covalent BTK inhibitors; ^bNeutropenia at baseline for prior BTKi (n=282) was 18.4, BCL2i-N (n=154) was 11.0 and BCL2i-E (n=128) was 27.3; ^cAggregate of neutropenia and neutrophil count decreased; ^dAggregate of all preferred terms including infection and COVID-19; ^eAggregate of contusion, ecchymosis, increased tendency to bruise and oral contusion; ^fAggregate of all preferred terms including rash; ^gAggregate of all preferred terms including hemorrhage or hematoma; ^hAggregate of atrial fibrillation and atrial flutter; ⁱOf the 13 total afib/aflutter TEAEs in the prior BTKi safety population (n=282), 6 occurred in patients with a prior medical history of atrial fibrillation.

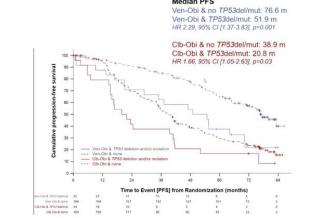
Key Learning Points

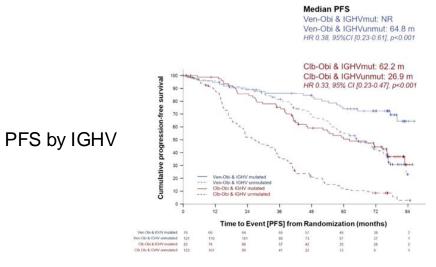


- BTKi treatment is superior to any form of CIT
- Very long-term efficacy data up to 10 years even in high risk
 - For patients treated with ibrutinib, mPFS at 7 years with OS of 70% at 10 years
- Most discontinuations are secondary to intolerance
- Low rates of progression even in high-risk disease in front line
- BTKi has a class effect AEs but second generation are better tolerated
- Cardiovascular toxicities should be taken into consideration in high-risk patients
- Non-covalent inhibitors can keep patients on BTKi after covalent failures

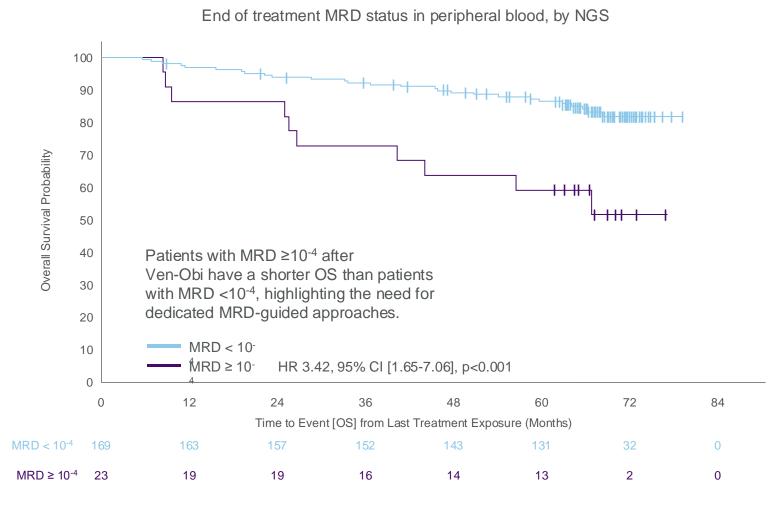

Continuous Therapy vs Fixed Duration


Shanafelt TD, et al. New Engl J Med. 2019; 381:435-443. Hillman P, et al. Lancet Oncol, 2023,24:535-552. Moreno C, et al. Lancet Oncol. 2019,20:43-56. Woyach JA, et al. Blood, 2021;138:639. Barr PM, et al. Blood Adv. 2022;6:3400-3450. Sharman JP, et al. Leukemia. 2022;36:1171-1175. Tam CS, et al. Lancet Oncol. 2022;23:1031-1043. AlSawaf O, et al. Nat Commun. 2023;14:2147. Eichhorst B, et al. N Eng J Med. 2023;338:1739-1754. Kater AP, et al. NEJM Evid. 2022;1:711. Tam CS, et al. Blood. 2022;139:3278-3289. National Institute of Health (NIH). Accessed Sept 25, 2024. https://clinicaltrials.gov/study/NCT04608318; NCT03836261.

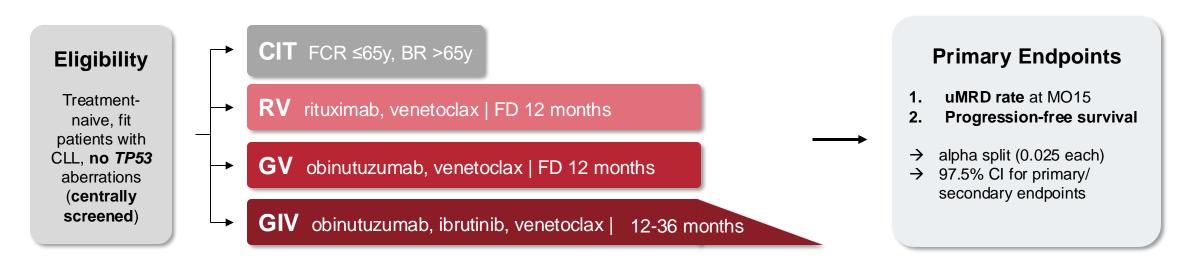




CLL14: Venetoclax + Obinutuzumab in TN CLL



PFS by TP53


Landmark OS after Ven-Obi According to MRD Status

- 53.1% treated with ven+obi remain without PFS event five years after tx
- Over 60% have not required a second-line treatment
- EOT MRD status significantly correlates with PFS and OS
- Benefit observed across all subgroups, including TP53del/mut and uIGHV
- No new safety signals or 2ry malignancies

4-Year Follow-Up from the Phase 3 GAIA/CLL13 Trial

Key patient characteristics

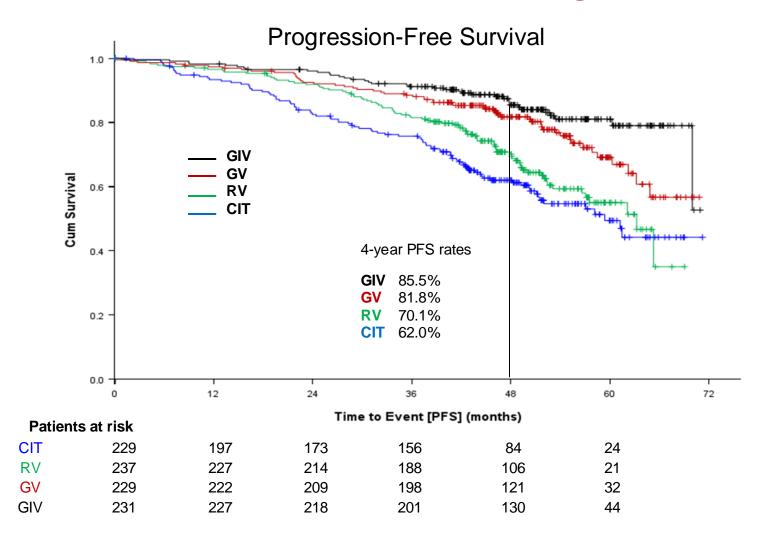
Randomized patients (=ITT population): n= 926

Median age: **61 years** (range: 27-84)

Median CIRS score: **2** (range: 0-7)
Unmutated IGHV: **56%** of all patients
Complex karyotype: **17%** of all patients

Follow-up analysis (data cut-off: 01/2023)

Median observation time


50.7 months (IQR: 44.6-57.9)

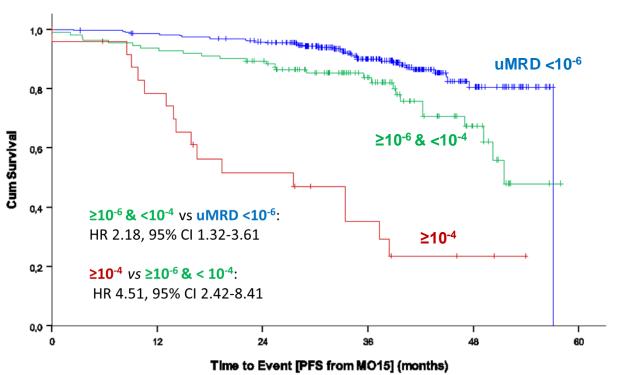
Median observation time after end of treatment

40.7 months (IQR: 34.5-47.9)

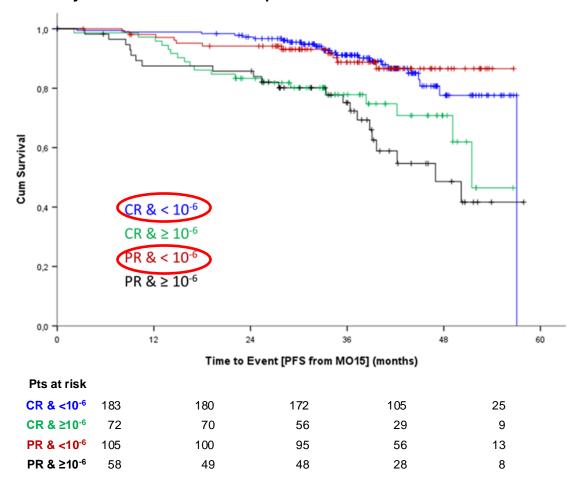
Efficacy: PFS

PFS comparisons

GIV *vs* **CIT**: HR 0.30, 97.5%CI: 0.19-0.47, *p<0.001* **GIV** *vs* **RV**: HR 0.38, 97.5%CI: 0.24-0.59, *p<0.001* **GIV** *vs* **GV**: HR 0.63, 97.5%CI: 0.39-1.02, *p*=0.03

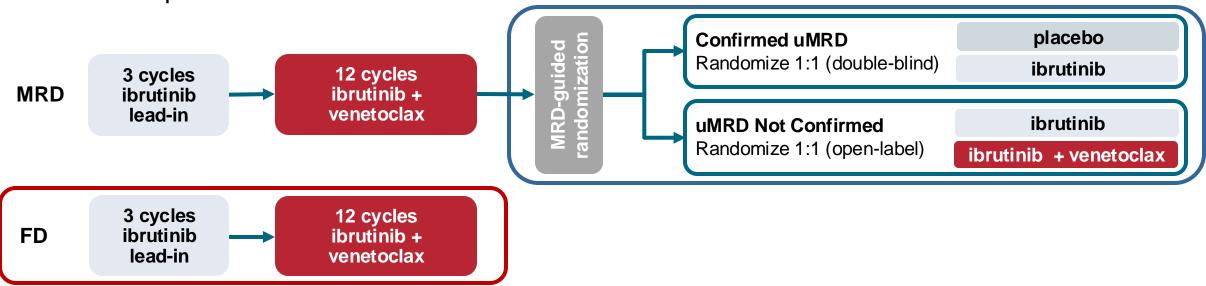

GV vs CIT: HR 0.47, 97.5%CI: 0.32-0.69, p<0.001 GV vs RV: HR 0.57, 97.5%CI: 0.38-0.84, p=0.001

RV vs **CIT**: HR 0.78, 97.5%CI: 0.55-1.10, p=0.1



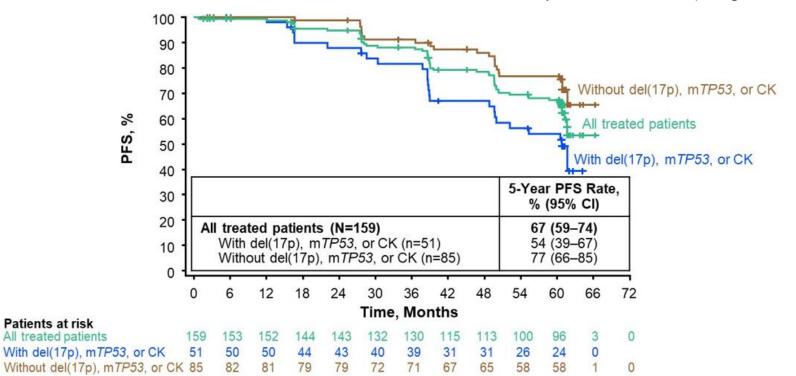
Correlation PB MRD/PFS

PFS by MRD level at MO15, GV/GIV


PFS by MRD level & response at MO15, GV/GIV

Phase 2 CAPTIVATE Study

 CAPTIVATE (PCYC-1142) is an international, multicenter phase 2 study evaluating first-line treatment with 3 cycles of ibrutinib followed by 12 cycles of combined ibrutinib + venetoclax that comprises 2 cohorts: MRD and FD

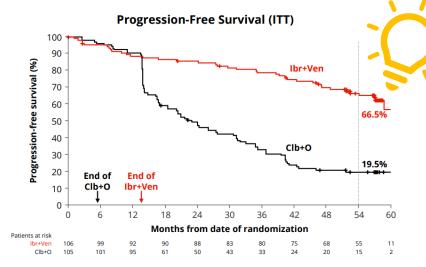

 Results from the MRD cohort demonstrated uMRD in more than two-thirds of patients treated with 12 cycles of ibrutinib + venetoclax (PB, 75%; BM, 68%), and 30-month PFS rates of ≥95% irrespective of subsequent MRD-guided randomized treatment

PFS in the FD Cohort

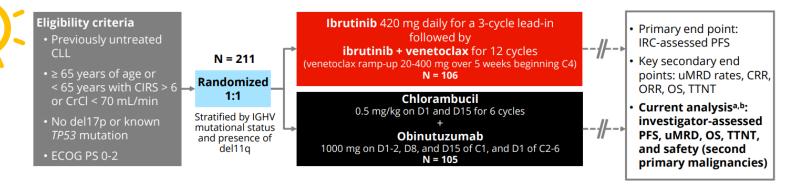
PFS in All Treated Patients and by del(17p), mTP53, or CK

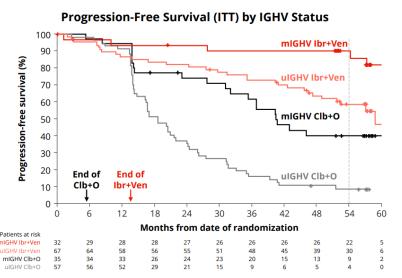
Median time on study: 61.2 months (range, 0.8-66.3)

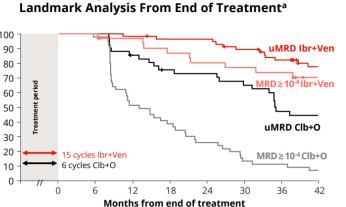
High-risk feature	n	5-year PFS rate, % (95% CI)
With del(17p)/m <i>TP5</i> 3	27	41 (21-59)
Without del(17p)/m <i>TP5</i> 3	129	73 (64-80)
With CK ^a	31	57 (37-72)
Without CK ^a	102	72 (61-80)
With del(11q) ^b	11	64 (30-85)
Without del(11q)b	74	79 (67-87)


Overall median PFS was not reached with up to 5.5 years of follow-up

lymphomaandmyeloma.com

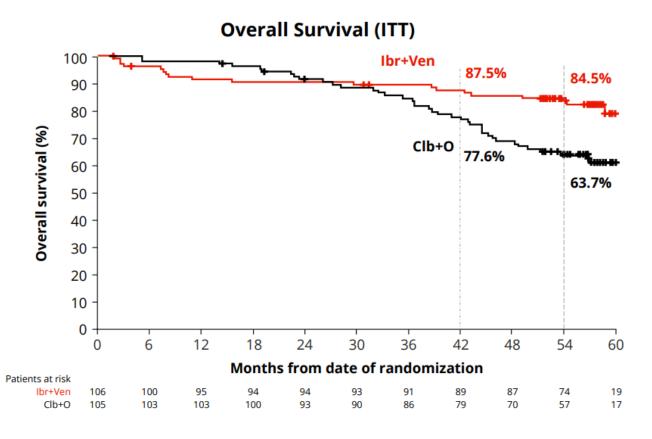

^aDefined as ≥3 chromosomal abnormalities by conventional CpG-stimulated cytogenetic; ^bExcluding patients with del(17p)/mTP53 or CK. CK = complex karyotype. Wierda WG, et al. *JCO*. 42:7009-7009.


Phase III GLOW Ibrutinib+Venetoclax: Median PFS Was Not Reached with up to 57mo of Follow-Up



- Estimated PFS rates at 42 months post tx
 - mIGHV CLL: 91% for uMRD at EOT+3, 92% for patients with MRD ≥ 10 -4 at EOT+3
 - uIGHV CLL: 78% for patients with uMRD at EOT+3, 50% for patients with MRD ≥ 10-4 at EOT+3

Patients at risk

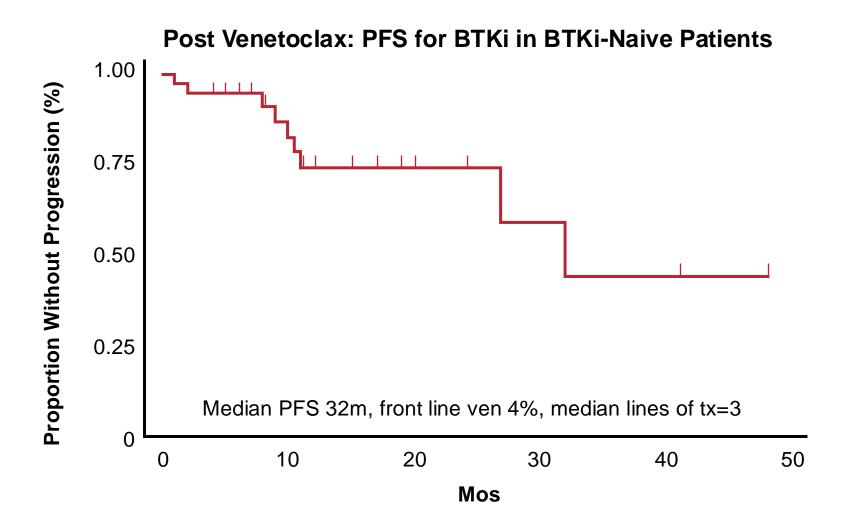


57

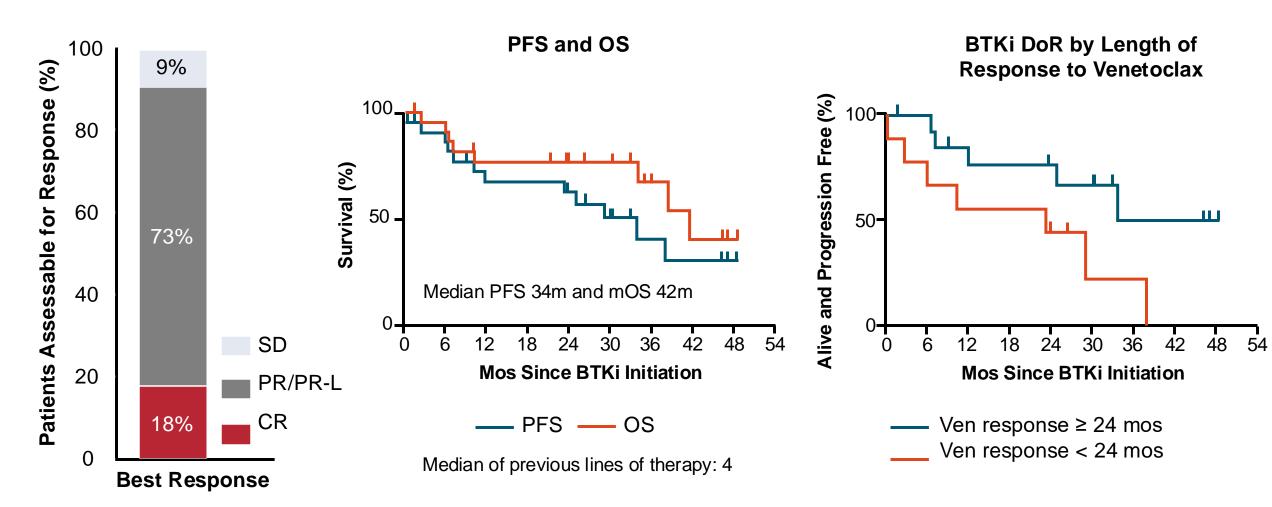
Progression-Free Survival

Phase III GLOW Ibr +Ven Remained Associated with Improved OS at 57 Months of Study Follow-Up

- Ibr+Ven reduced the risk of death by 55% versus Clb+O
- HR 0.453 (95% CI, 0.261-0.785);
 p = 0.0038
- Estimated 54-month OS rates:
 - 84.5% for patients treated with Ibr+Ven
 - 63.7% for patients treated with Clb+O


- Fixed duration with venetoclax and obinutuzumab results in high levels of MRD- that translate in better PFS and OS compare with MRD+
 - CLL14 trial shows long-term PFS benefits for patients with high-risk CLL
- Double oral combination will offer another convenience fix duration strategy
 - In Phase 3 GLOW trial, ibrutinib + venetoclax showed a 57-month PFS of 66.5% in first-line treatment in older or unfit patients
- Fixed duration combinations may lead to lower rates of cumulative toxicity/ongoing risks as well as less financial toxicity

Outcomes Data after Targeted Therapy Failure

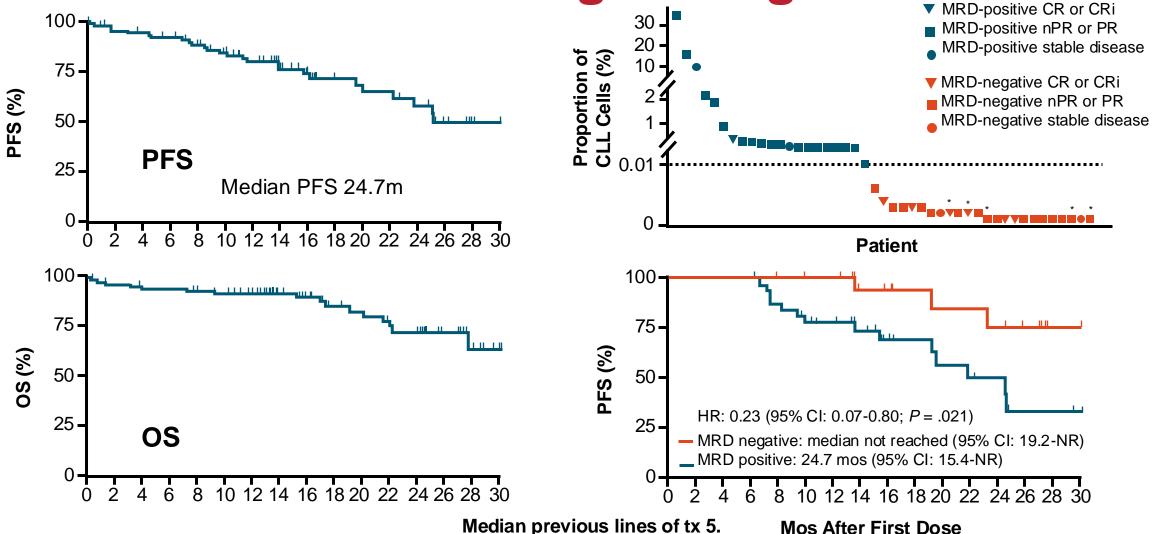


BTKi after Venetoclax in BTKi-Naïve Patients

BTKi Therapy in Patients with CLL Resistant to Ven

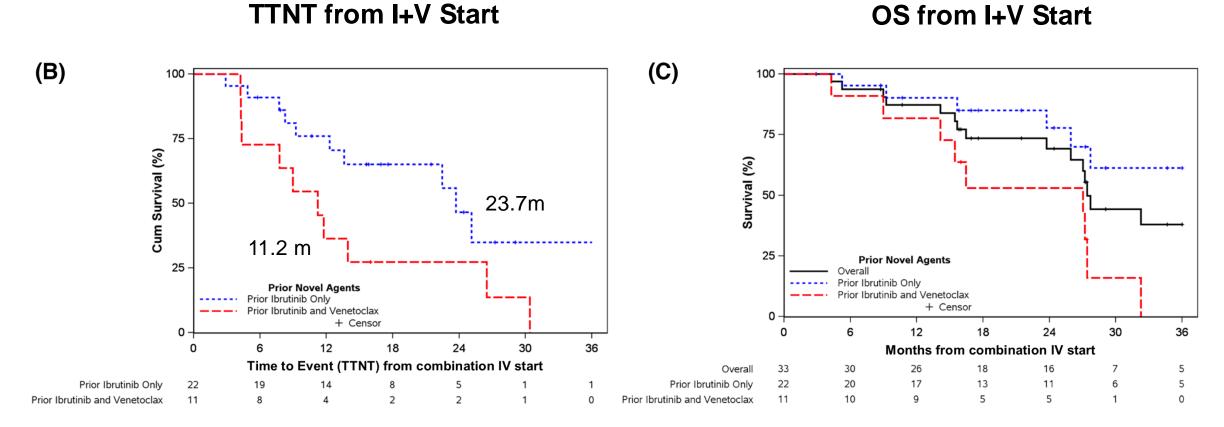
DOR = duration of response; SD = stable disease. Lin VS, et al. *Blood*. 2020;135(25):2266-2270.

Phase IIIb VENICE I Trial of Ven in R/R CLL: Efficacy


BCRi Treated (n = 67)

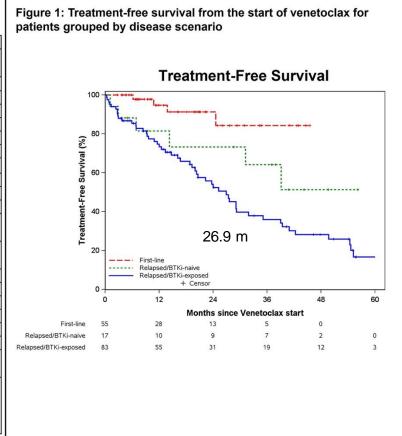
Response at week 48, n (%) [95% CI] CR/CRi PR/nPR	84 (32.6) [26.9-38.6] 121 (46.9) [40.7-53.2]	67 (35.1) [28.3-42.3] 96 (50.3) [43.0-57.6]	17 (25.4) [15.5-37.5] 25 (37.3) [25.8-50.0]
ORR, n (%) [95% CI]	206 (79.8) [74.4-84.6]	163 (85.3) [79.5-90.0]	43 (64.2) [51.5-75.5]
OS, n (%)	216 (83.7)	168 (88.0)	48 (71.6)
Median PFS, mos (95% CI) 17p/TP53 mutated Best PB uMRD CR/CRi PR/nPR	30.5 (28.6-30.5) 28.6 (28.6-30.5) Not reached Not reached 30.5 (-, -)	30.5 (29.6-30.5) 	28.6 (28.6,-)
PFS at 24 mos, % (95% CI]	77.0 (70.7-82.2)	79.4 (71.9-85.2)	69.9 (56.8-79.7)
Best PB uMRD at (10 ⁻⁴ , using NGS; ITT), n (%) CR/CRi PR/nPR	98 (38.0) - -	77 (40.3) 30/67 (44.8) 43/96 (44.8)	21 (31.3) 12/17 (70.6) 8/26 (30.8)

Median lines of tx 2; front line ibrutinib 1%.



Venetoclax for CLL Progressing after Ibrutinib

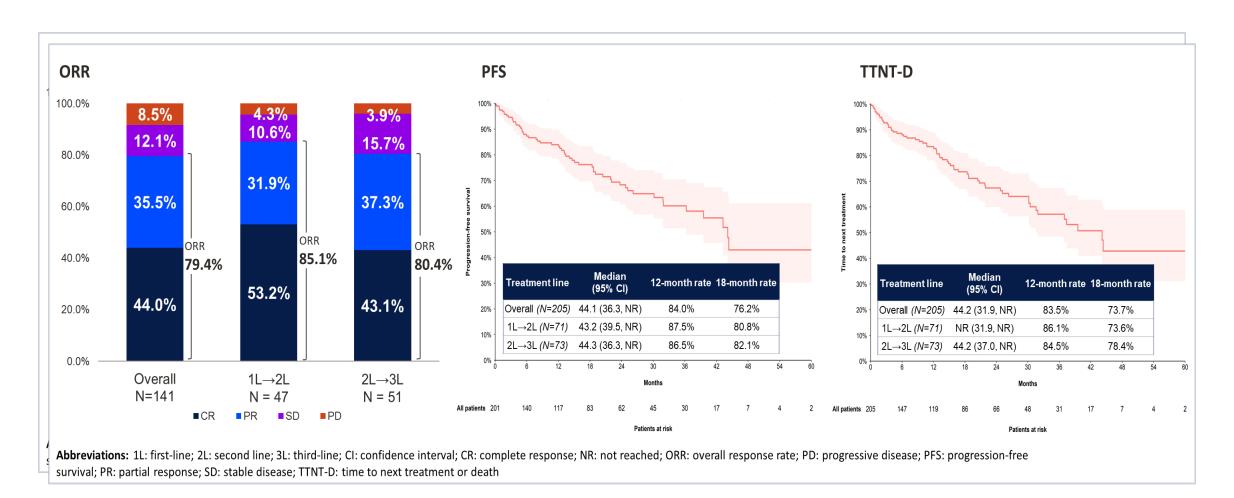
Patients with CLL Treated with I+V after Progression of I Alone of Sequential I and V



Median lines of previous therapy: 4.

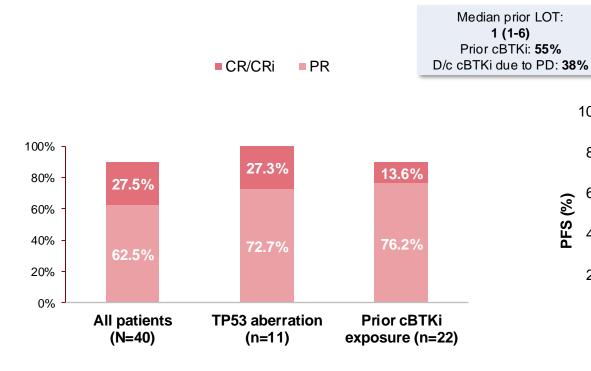
Patients with CLL Treated with Ven after BTKi Exposure

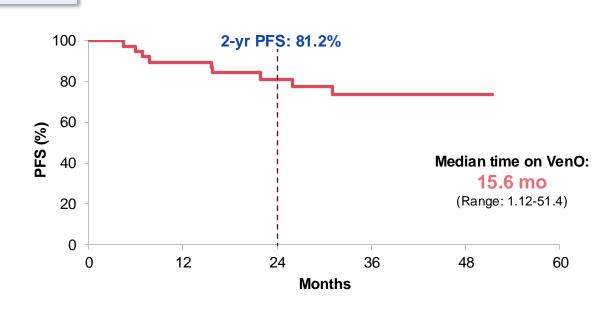
Table 1: Baseline characteristics at the time of venetoclax start Number (%) or Median [range] Parameter All patients Relapsed/BTK Firstline Relapsed/ BTKi-naïve i-exposed 17 Age, years 66 [41-93] 65 [41-84] 67 [51-83] 68 [43-93] 108 (70) 12 (71) 60 (72) 36 (66) Prior lines of therapy 1 [0-11] 0 1 [1-6] 3 [1-11] Combination 45 (29) 0 (0) 8 (47) 37 (45) Rituximab with anti-Obinutuzumah 80 (52) 55 (100) 9 (53) 16 (19) CD20mAb Monotherapy 30 (19) 0 (0) 0 (0) 30 (36) Rai stage, 20 (14) 2 (4) 2 (13) 16 (20) n=148 1-11 62 (42) 30 (58) 5 (31) 27 (34) III-IV 66 (45) 20 (39) 9 (56) 37 (46) Absolute Lymphocyte Count (x 22.4 [0-539] 80.7 [0-539] 16.2 [4-108] 13.0 [0.3-533] 109/L)*, n=150 Unmutated 93 (72) 20 (39) 8 (57) 8 (13) status*, n=129 FISH*, n=134 20 (15) 4 (27) 5 (8) None detected 11 (21) 5 (4) Other 0 (0) 0(0)5 (8) 13q-34 (25) 16 (30) 4 (27) 14 (21) Trisomy 12 23 (17) 11 (21) 2 (13) 10 (15) 11q-28 (21) 13 (25) 4 (27) 11 (17) 24 (18) 17p-2 (4) 1 (7) 21 (32) Complex (≥3 27 (39) 3 (12) 3 (38) 21 (58) karyotype*, n=69 abnormalities) TP53 Disruption Present 32 (24) 2(4)2 (13) 28 (41) (either del17p or (Abnormal) TP53 mutation)*, n=136



Median lines of previous therapy 3.

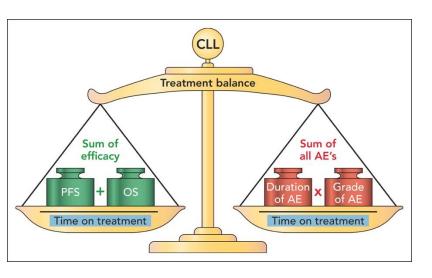
*not available for all patients


Venetoclax-Based Therapy after BTKi Failure in 1st or 2nd Line



VenObinu after cBTKi Failure in 2nd Line

PFS



Key Learning Points

- After BTKi or venetoclax failures, treatment with alternative targeted agents may produce good responses
- However, the durability of the response depends on previous lines of therapy, including CIT
- Not much data reported after first line BTKi or venetoclax primary failure but is likely better

Summary

Modern therapy is very effective but can achieve different goals

Be prepared to review goals of care with patients and empower their decision-making

Continuous Therapy

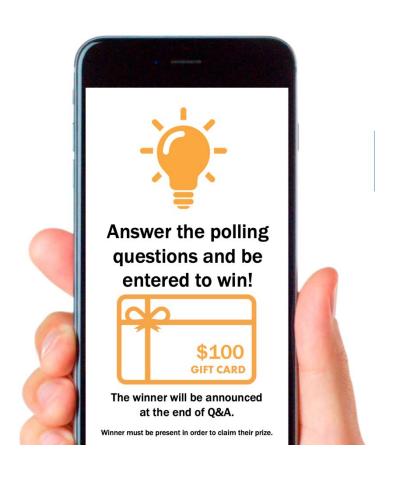
· BTK inhibitors

Goals of Therapy

- Disease control
- Prolonged PFS
- Independent from response, MRD

Fixed Duration

 Venetoclax + obinutuzumab


Goals of Therapy

- Disease eradication
- Prolonged PFS
- Undetectable MRD

Please participate in our polling questions.

To participate: Scan QR code or Go to https://app.meet.ps/attendee/llm24

Lymphoma
Leukemia & Myeloma **Congress**

October 16-19, 2024

New York, NY

Combination Studies of BTKi and BCL2 Inhibitors

John N. Allan

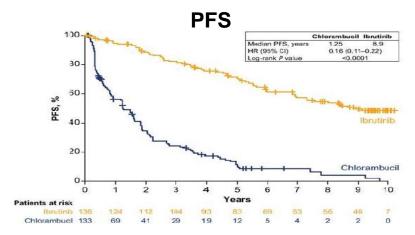
Weill Cornell Medicine

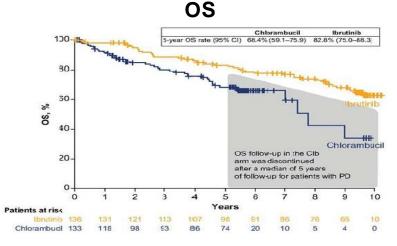
Disclosures

 John N. Allan: Consultant – Abbvie, Adaptive Biotechnologies, AstraZeneca, BeiGene, Genentech, Janssen, Lilly, NeoGenomics, Merck, Pharmacyclics; advisory board – Abbvie, Adaptive Biotechnologies, AstraZeneca, BeiGene, Genentech, Janssen, Lilly, NeoGenomics, Merck, Pharmacyclics; research/grant support – BeiGene, Celgene/BMS, Genentech

Learning Objectives

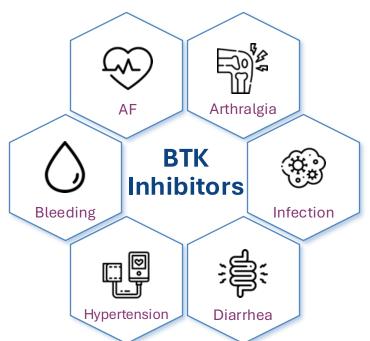
- Identify strengths and limitations of current treatment regimens for CLL/SLL in the context of patient risk stratification in 1st and later lines
- Evaluate the most recent real-world and clinical data, including long-term patient outcomes data, for BTK inhibitors as monotherapy and in combination with other targeted agents for CLL/SLL
- Describe common AEs associated with BTK inhibitors and strategies to manage/mitigate them in clinical practice

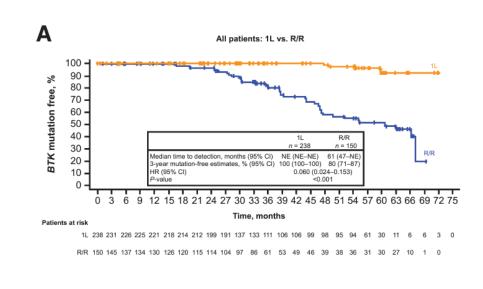



Topic Overview

- Overview of time limited approaches with BTK/BCL2 combinations
 - CAPTIVATE
 - GLOW
 - CLL 13
 - SEQUOIA Arm D
- Toxicity comparisons of time limited approaches
- Resistance and retreatment after time limited therapy

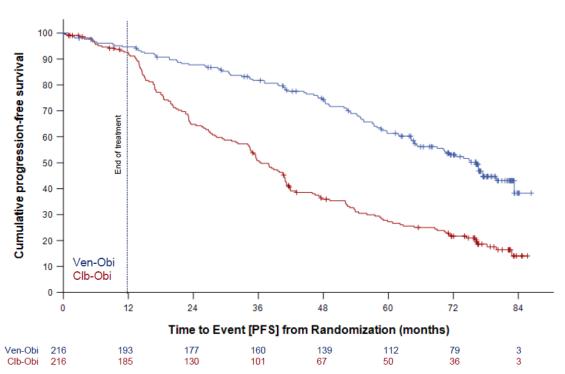
RESONATE-2 10 Year Final Analysis


Discontinuations


	Ibrutinib N=135
Median (range) duration of ibrutinib treatment, years	6.2 (0.06-10.2)
Continuing ibrutinib at study closure, n (%)	37 (27)
Discontinued ibrutinib, n (%)	
Due to AE	44 (33)
Due to PD	18 (13)

AE, adverse event.

Time Limited Combination Approaches May Address Toxicity and Resistance



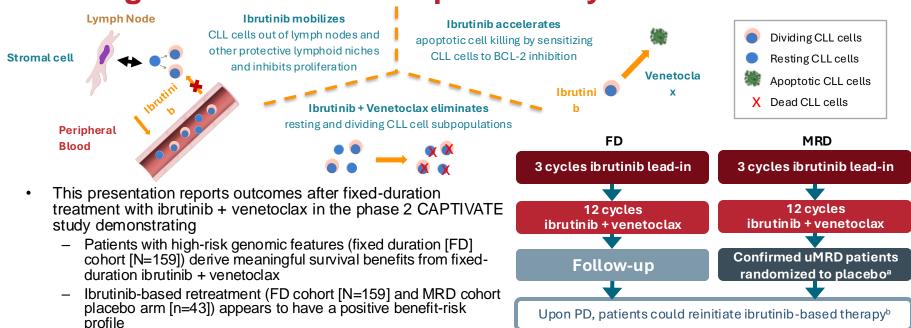
RR = relapsed/refractory; NE = not estimable; 1L = first line; AF = atrial fibrillation. Lipsky A, Lamanna N. *Hematology Am Soc Hematol Educ Program*. 2020;2020(1):336-345. Woyach JA, et al. *Clin Cancer Res*. 2023;29(16):3065-3073.

CLL14 6 Year PFS

Median PFS

Ven-Obi: 76.2 months Clb-Obi: 36.4 months

6-year PFS rate


Ven-Obi: 53.1% Clb-Obi: 21.7%

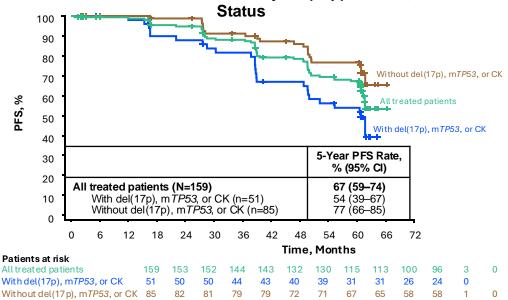
HR 0.40, 95% CI [0.31-0.52] P<0.0001

6 Year TTNT 65% uMRD mIGHV 5yr PFS ~80+% uMRD uIGHV 5yr PFS ~50%

CAPTIVATE: Ibrutinib and Venetoclax Work Synergistically Through Distinct and Complementary Modes of Action

aPatients with confirmed uMRD (defined as uMRD [<10⁻⁴ by 8-color flow cytometry] serially over ≥3 cycles in both peripheral blood and bone marrow) after 12 cycles of ibrutinib + venetoclax were randomly assigned 1:1 to receive placebo or ibrutinib; only the placebo arm was included in the current analysis. ^bPatients with PD after completion of fixed-duration ibrutinib + venetoclax could reinitiate single-agent ibrutinib (FD cohort or MRD cohort placebo arm); patients with PD >2 years after treatment completion could reinitiate fixed-duration ibrutinib + venetoclax (FD cohort). Ibrutinib + venetoclax is approved for first-line treatment of CLL/SLL in 78 countries across the world.

Lu P, et al. Blood Cancer J. 2021;11(2):39. Deng J, et al. Leukemia. 2017;31:2075-2084. Herman SEM, et al. Clin Cancer Res. 2015;21:4642-4651.

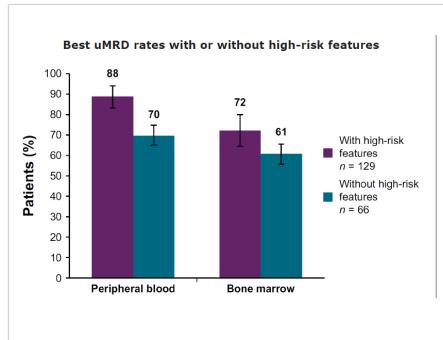


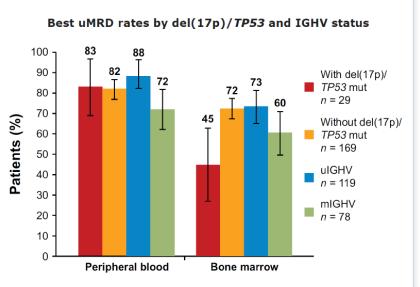
Overall Median PFS Was Not Reached with Up to 5.5 Years of Follow-Up

Median time on study: 61.2 months (range, 0.8–66.3)

		With feature		Without feature		
High-risk feature	n	5-Year PFS rate, % (95% CI)	n	5-Year PFS rate, % (95% CI)		
del(17p)/m <i>T</i> <i>P</i> 53	27	41 (21–59)	129	73 (64–80)		
CKa	31	57 (37–72)	102	72 (61–80)		
del(11q) ^b	11	64 (30–85)	74	79 (67–87)		

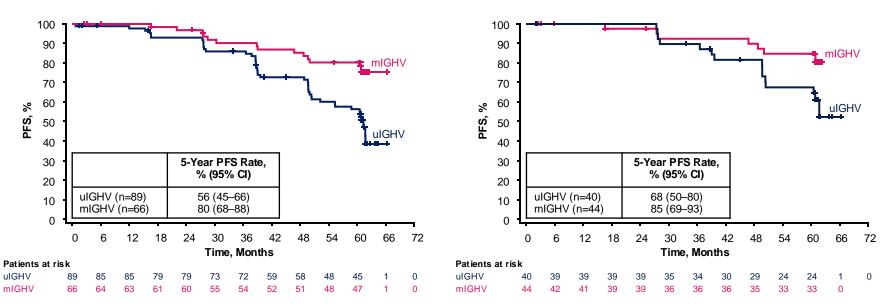
PFS in All Treated Patients and by del(17p), mTP53, or CK


CK = complex karyotype.

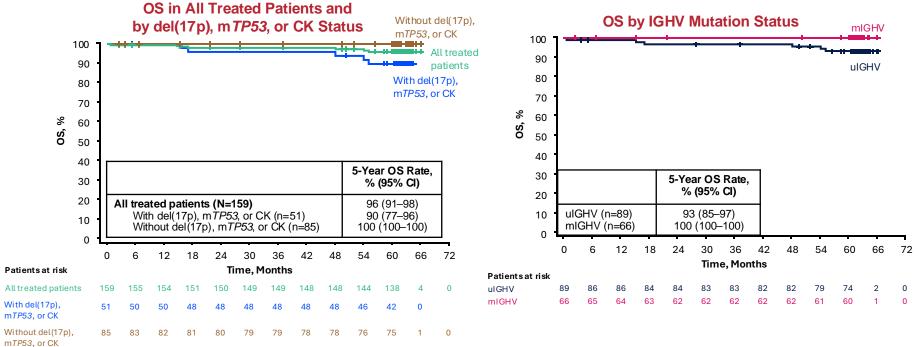

^aDefined as ≥3 chromosomal abnormalities by conventional CpG-stimulated cytogenetics; ^bExcluding patients with del(17p)/mutated TP53 or CK.

Wierda WG, et al. JCO. 2024;42:7009-7009.

CAPTIVATE: Best MRD Rates and Risk Factors of FD

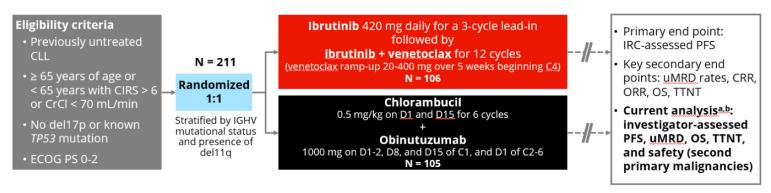


FD Cohort: 5-Year PFS Rates by IGHV Mutation Status (N=159)


PFS by IGHV Mutation Status (Excluding Patients with del(17p), m*TP53*, or CK)

Presence of del(17p), mTP53, and/or CK had a substantial impact on PFS in patients with uIGHV and mIGHV

FD Cohort: 5-Year OS Rates Were ≥90% Regardless of Genomic Risk Features

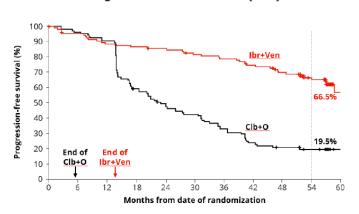


• 5-year OS rates were ≥95% regardless of MRD status in PB or BM at 3 months after EOT or in PB at 12 months after EOT

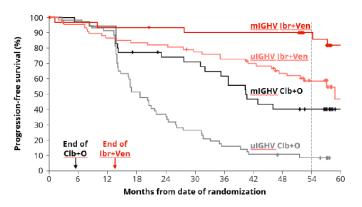
OS = overall survival; BM = bone marrow; PB = peripheral blood; EOT = end of treatment. Wierda WG, et al. *JCO*. 2024;42:7009-7009.

GLOW Study Schema 57m Update

- Baseline characteristics (presented previously) were generally balanced between arms and reflective of an elderly and/or comorbid population¹
- IGHV status at baseline:
 - Ibr+Ven arm: mIGHV 30.2%, uIGHV 63.2%
 - Clb+O arm: mIGHV 33.3%, uIGHV 54.3%


aAll p values are nominal. buMRO in PB by NGS via

assay.

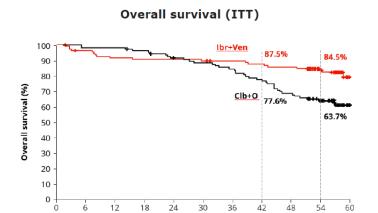

GLOW 5 Year Follow-Up: PFS

Progression-free survival (ITT)

- Ibr+Ven reduced the risk of progression or death by 74% vs Clb+O
 HR 0.256 (95% Cl 0.172-0.382); p<0.0001
- Estimated 54-month PFS rates at 57 months of follow-up:
 - 66.5% for lbr+Ven
 - 19.5% for Clb+O

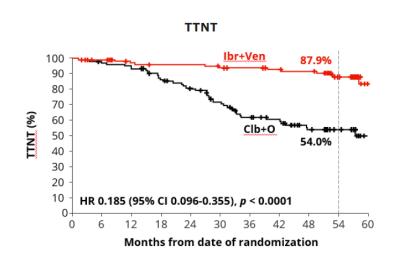
Progression-free survival (ITT) by IGHV status

Estimated 54-month PFS rates:


- Ibr+Ven:

- 90% for patients with mIGHV
- 59%, for patients with uIGHV

- Clb+O:


- 40% for patients with mIGHV
- 8% for patients with uIGHV

GLOW 5 Yr OS and TTNT

Months from date of randomization

- Ibr+Ven reduced the risk of death by 55% vs Clb+O
 HP 0 453 (95% Cl 0 261-0 785);
 - HR 0.453 (95% CI, 0.261-0.785); p=0.0038
- · Estimated 54-month OS rates:
 - 84.5% for patients treated with Ibr+Ven
 - 63.7% for patients treated with Clb+O

CLL13/GAIA: Study Schema and Patient Population

Key patient characteristics

Randomized patients (=ITT population): n= 926

Median age: 61 years (range: 27-84)

Median CIRS score: 2 (range: 0-7)
Unmutated IGHV: 56% of all patients
Complex karyotype: 17% of all patients

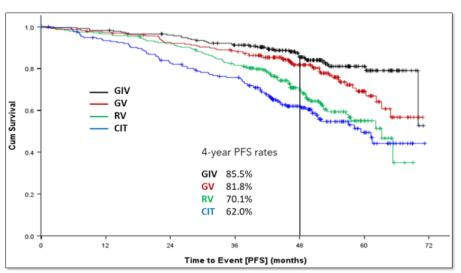
received ibr continuation

Follow-up analysis (data cut-off: 01/2023)

Median <u>observation</u> time **50.7** <u>months</u> (IQR: 44.6-57.9)

Median observation time after end of treatment

40.7 months (IQR: 34.5-47.9)


GV = venetoclax-obinutuzumab; CIT = chemoimmunotherapy; GIV = GV + ibrutinib; RV = ven-rituximab; FCR = fludarabine-cyclophosphamide-rituximab.

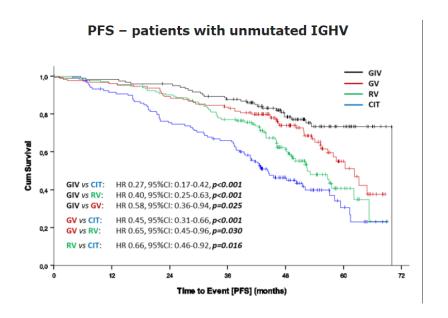
Fürstenau M, et al. Presented at: ASH Annual Meeting; Dec 10, 2023; San Diego, CA. 635.

CLL13/GAIA 4 Yr PFS

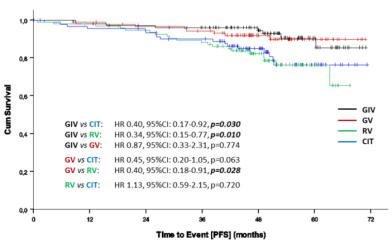
Median observation time: 50.7 months

PFS comparisons

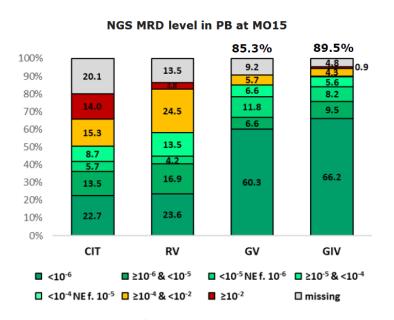
GIV vs **CIT**: HR 0.30, 97.5% CI 0.19-0.47, **p<0.001** GIV vs **RV**: HR 0.38, 97.5% CI 0.24-0.59, **p<0.001** GIV vs **GV**: HR 0.63, 97.5% CI 0.39-1.02, p=0.03

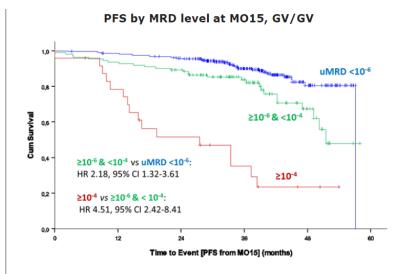

GV vs CIT: HR 0.47, 97.5% CI 0.32-0.69, **p<0.001** GV vs RV: HR 0.57, 97.5% CI 0.38-0.84, **p=0.001**

RV vs CIT: HR 0.78, 97.5% CI 0.55-1.10, p=0.1

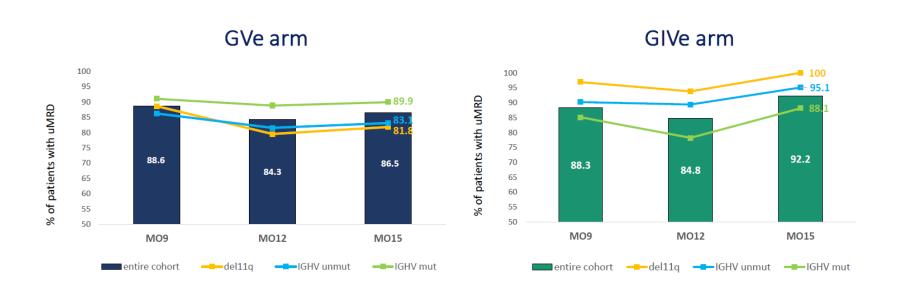

Obinutuzumab regimens statistically significantly improve PFS

PFS Benefit of GIV Currently Restricted to ulGHV Subtype

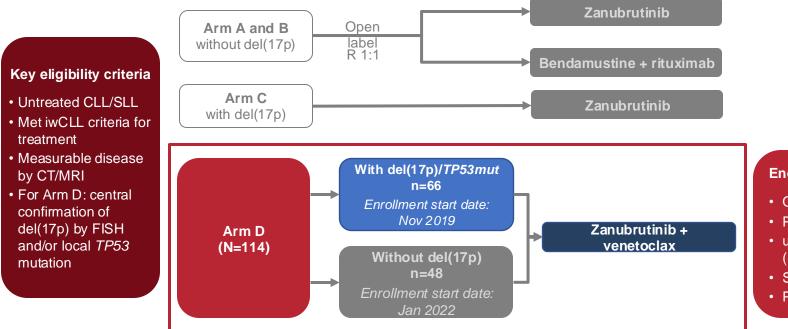



PFS – patients with mutated IGHV

CLL13/GAIA and MRD Outcomes



	CLL14 VenG	GLOW I+V	CAPTIVATE I+V
EoT+3	40% 1x10 ⁻⁶ 74% 1x10 ⁻⁴	43.5% 1x10 ⁻⁵ 54.7% 1x10 ⁻⁴	57% 1x10 ⁻⁴



Differential uMRD Rates for ulGHV and Del 11q with Addition of BTKi

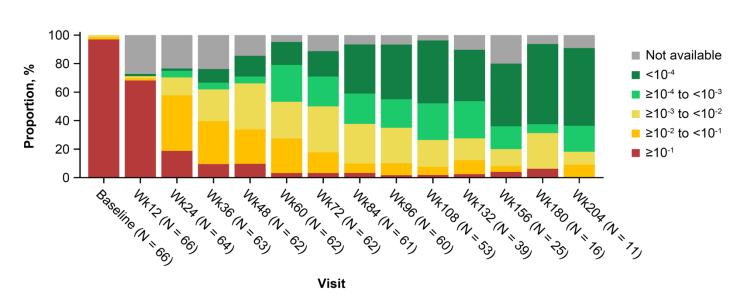
SEQUOIA Study Design: Arm D Cohort with del(17p) and/or TP53mut

Endpoints for Arm D

- ORR (INV)a
- PFS (INV)
- uMRD4 rate (<10⁻⁴ sensitivity)
- Safety per CTCAE
- Pharmacokinetics

^a Reponses assessed per modified iwCLL criteria for CLL and Lugano criteria for SLL. CTCAE = Common Terminology Criteria for Adverse Events; FISH = fluorescence in situ hybridization. Ghia P, et al. Presented at: EHA 2024; June 13, 2024; Madrid, Spain. S160.

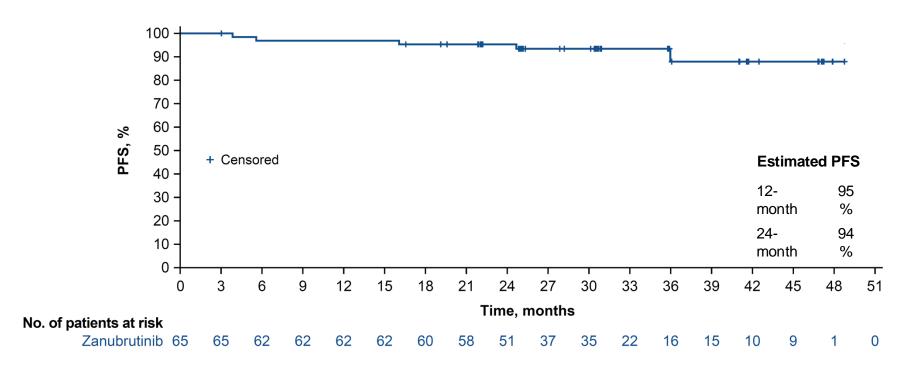
SEQUOIA Arm D Included Only a High-risk Population


	Zanubrutinib + venetoclax
Characteristic	(n=66)
Age, median (range), years	66 (26-87)
≥65 years, n (%)	36 (55)
Male sex, n (%)	34 (52)
White race, n (%)	58 (88)
ECOG performance status, n (%)	
1	32 (48)
2	2 (3)
SLL, n (%)	3 (5)
Bulky disease, n (%)	
Any target lesion LDi ≥5 cm	29 (44)
Any target lesion LDi ≥10 cm	5 (8)
Genotype status, n (%)	
del(17p) positive and/or <i>TP53</i> mutated	66 (100)
del(17p) positive and TP53 mutated	42 (64)
del(17p) positive and <i>TP5</i> 3 unmutated	17 (26)
del(17p) negative and TP53 mutated	7 (11)
Unmutated IGHV	56 (85)
Complex karyotype, n (%)	
≥3 abnormalities	33 (50)
≥5 abnormalities	24 (36)
del(17p) % of abnormal nuclei, median (range)	60.5 (1-98)

LDi = longest diameter.

Rates of uMRD in PB Increased with Longer Treatment Duration

MRD rates in PB



Best uMRD rate: 59% (39/66) in ≥1 PB sample; 37% (13/35) in ≥1 BM sample; a CAPTIVATE EOT W60 and EOT +3 W72 best uMRD in PB 55%

Ghia P, et al. Presented at: EHA 2024; June 13, 2024; Madrid, Spain. S160.

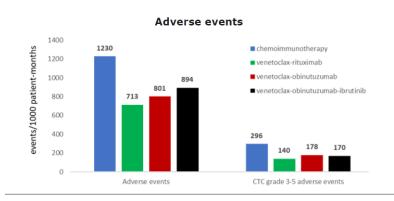
With Median Study Follow-up of 31.6 Months, Median PFS Was Not Reached

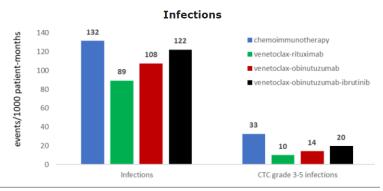
AMPLIFY Press Release July 2024

 "Fixed-duration [acalabrutinib] plus venetoclax, with or without obinutuzumab, significantly improved progression-free survival in 1st-line chronic lymphocytic leukaemia in AMPLIFY Phase III trial"

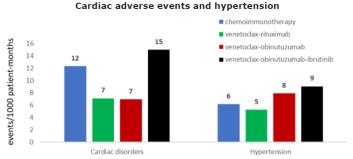
Ongoing Combination Studies in Frontline CLL

NCT#
NCT04608318
NCT03737981
NCT03701282
NCT03836261
NCT05057494
NCT05197192
NCT03336333
NCT04639362
NCT05650723
NCT05677919
NCT05536349


Dhase	Tuial Aussa	N	Duimous Fuducius
Phase	Trial Arms	N	Primary Endpoint
3	Ibr vs I+V vs VenG	897	PFS
3	IbrG vs IVG	454	PFS
3	IbrG vs IVG	720	PFS
3	AcalaVen vs AVG vs FCR/BR	984	PFS
3	AcalaVen vs VenG	750	PFS
3	AVG vs VenG	650	PFS
2	ZanuVen in del17p	86	MRD
2	I+V + Obin consolidation if MRD+	85	MRD
2	Once-daily ZanuVen ZanuVenG consolidation if MRD+	50	MRD
2	PirtoVen with extension of therapy if MRD+	45	MRD
2	PirtoVenG triplet FD	60	MRD



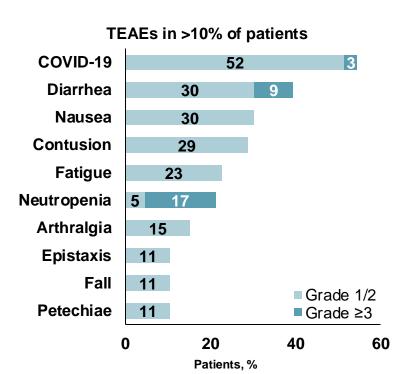
Safety and Retreatment

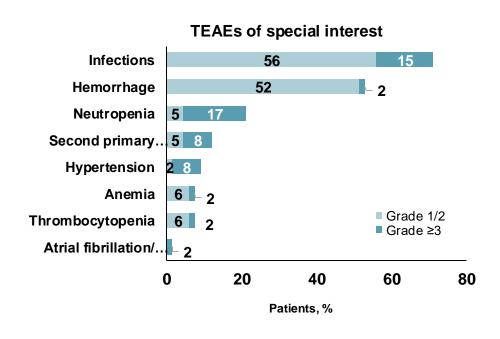

CLL13/GAIA: Safety

Exposure-adjusted incidence rates:

- Events per 1000 patient-months based on the treatment period.
- Treatment period = start of treatment until the end of treatment + 84 days or until start of first subsequent treatment whichever occurred first.

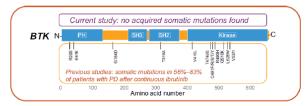
Safety Profile: CLL13

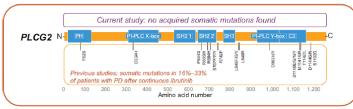

Adverse Events ≥ CTC Grade 3 Overview

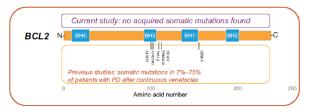

Severe AEs occurring in ≥5% of pts and AEs of interest independent from incidence

	CIT	RVe	GVe	GIVe	CADTIVATE Ovada 2 AFa
All patients [SP]	216	237	228	231	CAPTIVATE Grade 3 AEs
Anemia	16 (7.4)	9 (3.8)	11 (4.8)	9 (3.9)	
Neutropenia	113 (52.3)	109 (46.0)	127 (55.7)	112 (48.5)	Neutropenia: ~34%
Thrombocytopenia	22 (10.2)	10 (4.2)	42 (18.4)	37 (16.0)	
Febrile neutropenia	24 (11.1)	10 (4.2)	7 (3.1)	18 (7.8) 📥	Febrile neutropenia ~1%
Infections	43 (19.9)	27 (11.4)	32 (14.0)	51 (22.1) 👉	
Tumor lysis syndrome*	9 (4.2)	24 (10.1)	20 (8.8)	15 (6.5) 📥	■ TLS ~<1%
Bleeding events	1 (0.5)	1 (0.4)	1 (0.4)	4 (1.7)	
Atrial fibrillation	1 (0.5)	1 (0.4)	0 (0.0)	6 (2.6)	7)
Pts completed treatment (%) Reduced dose intensity (%)	176 (81.5%) 32 (14.8%)	219 (92.4 %) 44 (19.3%)	214 (93.9%) 47 (21.5%)	197 (85.3%)* 81# (36.5%)	

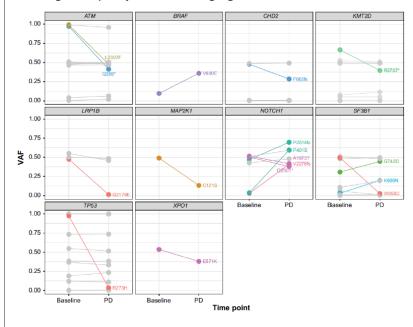
Safety Summary SEQUIOA Arm D


^a Neutropenia combines preferred terms *neutrophil count decreased* and *neutropenia*. TEAE = treatment-emergent adverse event.


Ghia P, et al. Presented at: EHA 2023; June 8, 2023; Frankfurt, DE. P617.

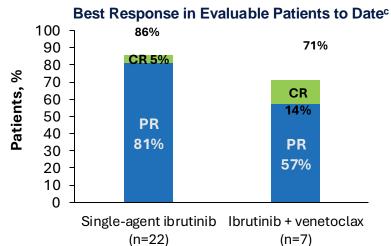


CAPTIVATE: No Acquisition of BTK/PLCG2/BCL2 Mutations


Mutational sites analyzed in 29 PD patients with matched samples

Among 20 of 29 evaluable subjects, 55% had VAF changes of 10% or greater, only 7 of 17 changing variants increased at PD

VAF = variant allele frequency.
Jain N, et al. *Clin Cancer Res.* 2024;30(3):498-505.



Responses Observed with Ibrutinib-Based Retreatment

- Of 61 patients with CLL PD after completion of fixed-duration ibrutinib + venetoclax, 32 (52%) initiated retreatment with single-agent ibrutinib (n=25) or ibrutinib + venetoclax (n=7)
- Median time on retreatment on study
 - 21.9 months (range, 0.0–50.4) for single-agent continuous ibrutinib
 - 13.8 months (range, 3.7–15.1) for 15-month fixed-duration ibrutinib + venetoclax

Study Entry Baseline Characteristics: Retreated Patients

Olday Entry Baseline Onaraoteristics. Retreated 1 attents						
Characteristic	Single-agent ibrutinib (n=25)	lbrutinib + venetoclax (n=7)	All Retreated Patients (n=32)			
Median age (range), years	56 (39–71)	63 (49–69)	59 (39–71)			
Male, n (%)	15 (60)	6 (86)	21 (66)			
Rai stage III/IV, n (%)	4 (16)	2 (29)	6 (19)			
High-risk genomic features, n (%) Unmutated IGHV del(17p)/mutated TP53 del(11q) ^d Complex karyotype ^e	20 (80) 5 (20) 6 (24) 9 (36)	5 (71) 5 (71) 1 (14) 2 (29)	25 (78) 10 (31) 7 (22) 11 (34)			
Bulky LN disease ≥5 cm, n (%)	10 (40)	1 (14)	11 (34)			

^aPer protocol, only patients with PD >2 years after completion of treatment were eligible to reinitiate ibrutinib + venetoclax. ^bFour patients exited the study during ibrutinib + venetoclax retreatment and completed retreatment off study. ^cThree patients who initiated single-agent ibrutinib retreatment had not yet undergone response assessment.

^dWithout del(17p) per Döhner hierarchy. ^aDefined as ≥3 abnormalities by conventional CpG-stimulated cytogenetics.

| Vmphomaandmyeloma.com

Key Learning Points

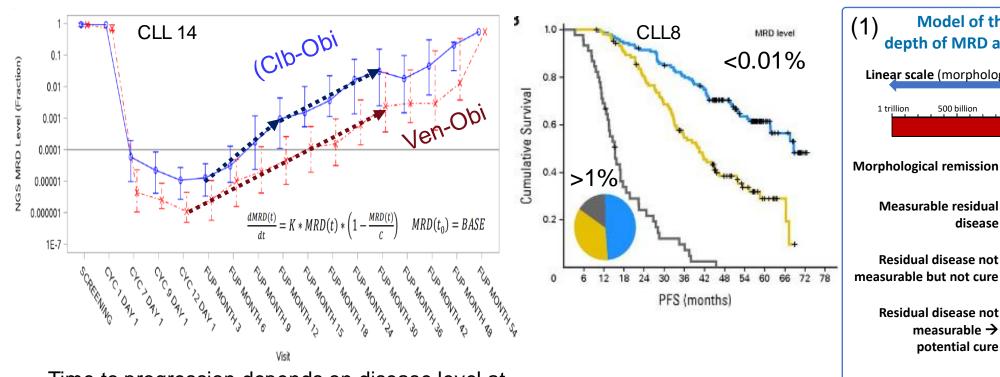
- Time limited approaches can provide high rates of response, uMRD, and durable treatment free remissions
- Triplet therapy may improve depth of remissions and subsequent pfs particularly for higher risk patients (Del11q, uIGHV)
- Toxicity appears increased with triplet therapy as compared to oral doublets or Veng when evaluating infections, neutropenia, and completion of therapy
- PFS and OS appear comparable to current VenG time limited therapy and has advantage of debulking and ease of initiation
- Currently progressors after I+V have not shown acquisition of resistance mutations and retreatment with single agent BTKi or doublet therapy is feasible.
- We await H2H trials evaluating current standards and doublets vs triplets

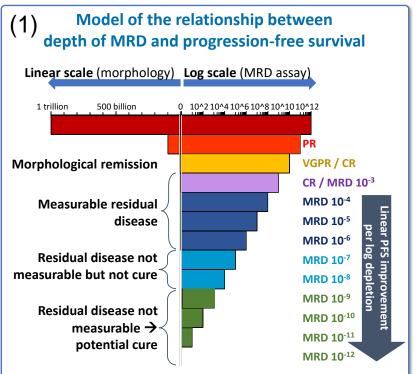
Andy Rawstron

Haematological Malignancy Diagnostic Service Leeds Cancer Centre

Disclosures

 Andy Rawstron: Advisory board – AbbVie, Beigene, Janssen, Roche; research/grant support – AbbVie, BD Biosciences, Beckman Coulter, Beigene, Celgene, Janssen, Pharmacyclics, Roche; honoraria – AbbVie, BD Biosciences, Beckman Coulter; Janssen; consultant – Beigene, Celgene, Pharmacyclics




Learning Objective

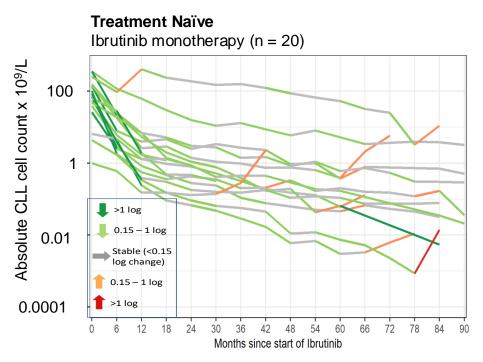
 Discuss the importance of MRD evaluation and molecular profiling for treatment selection and sequencing in CLL/SLL

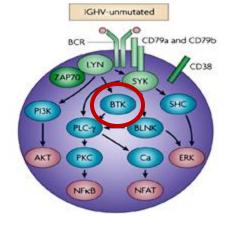
MRD and Time to Progression: Linear Improvement in PFS per Log Depletion for Fixed Duration Treatment

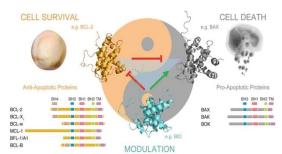
Time to progression depends on disease level at end of treatment (BASE) and growth rate (K)

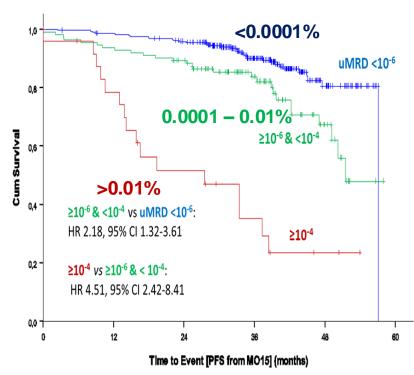
(1)Content represents the speaker's own opinion and not published data.

PFS = progression free survival; Clb = chlorambucil; Obi = Obinutuzumab; Ven = venetoclax. FCR = fludarabine, cyclophosphamide, rituximab; CIT = chemoimmunotherapy; VGPR = very good partial response; CR = complete response.


al-Sawaf O, et al. *J Clin Oncol.* 2021;39(36):4049-4060. Bottcher, et al. *J Clin Oncol.* 2012;30(9):980-8.


MRD Kinetics with Targeted Agents


B-cell receptor inhibitors (BTKi): prolonged remission with persistent detectable disease – **MRD** is irrelevant


BCL2-pathway inhibitors (BCL2i): **deep** (<1 CLL cell per million) & **rapid** depletion in a high proportion of patients

TN CLL BTKi monotherapy IclCLLe trial: 1-2 log reduction in first year with gradual depletion (~0.2log/year) after

Impact of MRD in first-line venetoclax combinations in CLL: 4-year follow-up from the phase 3 GAIA/CLL13 trial.

BM uMRD4* (<0.01%) Is the IWCLL Threshold but MRD Is a Continuous Variable with Multiple Informative Thresholds, Not a Pos/Neg Test

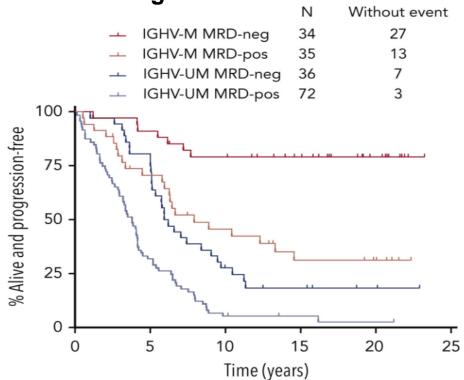
Flow, qPCR, or ddPCR: MRD5

- Reference centers several per country
- Flow: Rapid turnaround, commercial kits available, but fresh samples only and operator dependent
- dd/qPCR: Can use stored/batched DNA but it is a patient-specific assay that needs pretreatment DNA

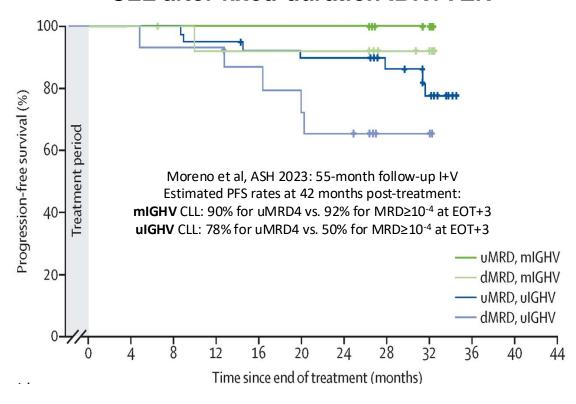
Next-gen sequencing (NGS): MRD6

- Highly sensitive, FDA-cleared, and IVDR commercial assays available
- Needs pre-treatment DNA, some assays not quantitative and can be expensive

uMRD = undetectable MRD, 4 / 5 / 6 denotes log₁₀ normal cells (denominator)


MRD status*	CLL cells per million total cells	Comments		
>1% or "high MRD"	>10 thousand	High risk of progression within the following year		
0.01-1% or "intermediate MRD"	100 – 10K	Intermediate risk of progression		
<0.01% or uMRD4	<100	iwCLL guideline threshold (confirmed in BM)		
uMRD5	<10	Technical target for confirmation of uMRD4		
uMRD6	<1	Detection limit for FDA- approved HTS assay		

^{*} Individual reports should include: Point estimate (CLL % of total cells); # total cells assessed or DNA equivalent, and assay limit of detection / quantitation (specific to assay and sample).



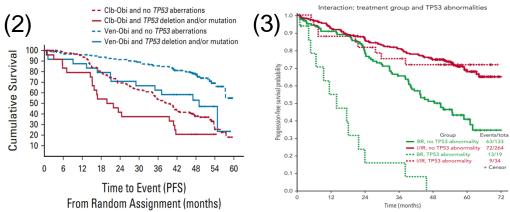
IGHV-Mutation Status: Different Implications for MRD in IGHV-Mutated (M-CLL) vs IGHV-Unmutated (U-CLL)

Sustained (>10yr) remission in some M-CLL achieving uMRD4 after CIT

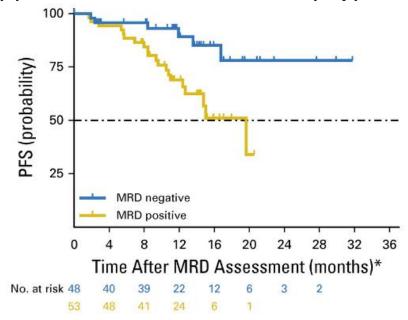
Similar PFS for uMRD4 vs detectable MRD in M-CLL after fixed-duration IBR+VEN

IGHV = immunoglobulin heavy-chain variable region gene. Thomson P, et al. *Blood.* 2023;142(21):1784-1788. Niemann CU, et al. *Lancet Oncol.* 2023;24(12):1423-1433. Moreno C, et al. Presented at: ASH 2023; December 10, 2023; San Diego, CA. 634.

MRD in Combination with Molecular Profiling


MRD is an independent prognostic factor in CIT (1)

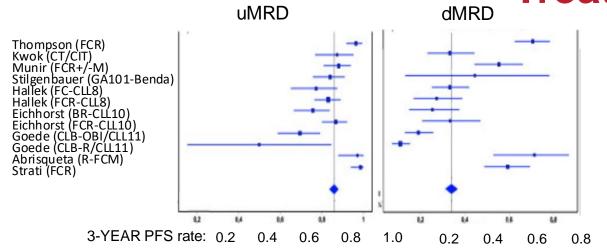
	PFS			OS			
Variable	HR	95% CI	Р	HR	95% CI	P	
Total CIRS score				1.21	1.05 to 1.39	.010	
Age > 65 years				1.65	1.03 to 2.64	.038	
Del(17p)	9.67	4.61 to 20.25	< .001	5.02	2.24 to 11.26	< .001	
Del(11q)	1.32	1.00 to 1.75	.049				
IGHV unmutated	2.40	1.76 to 3.27	< .001	3.35	1.84 to 6.12	< .00	
Treatment arm			.001				
FC v FCR	0.87	0.64 to 1.19	.387				
BR v FCR	1.63	1.18 to 2.24	.003				
Partial response	1.48	1.11 to 1.96	.007				
MRD positivity in PB	3.55	2.69 to 4.69	< .001	2.34	1.50 to 3.66	< .001	

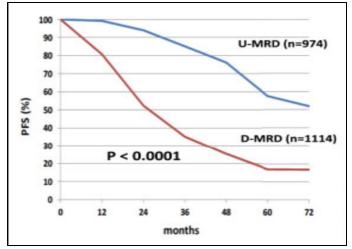

NOTE. Blank cells denote the lack of a significant association in multivariable analysis. Multivariable analyses for PFS and OS were performed on 515 and 516 patients, respectively, with all data available.

Abbreviations: BR, bendamustine plus rituximab; CIRS, cumulative illness rating scale; FC, fludarabine and cyclophosphamide; FCR, fludarabine, cyclophosphamide and rituximab; HR, hazard ratio; MRD, minimal residual disease; OS, overall survival; PB, peripheral blood; PFS, progression-free survival.

Continuous BTKi treatment may be preferable for CLL patients with TP53 abnormalities

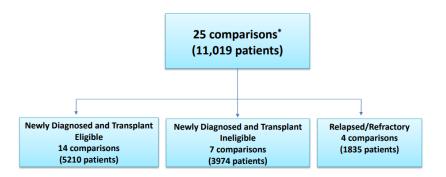
(3) VEN for TN/RR CLL with del(17p)




- BTK / PLCG2 mutations: Primarily in BTKi monotherapy trials – MRD not informative
- BCL2 mutations: Infrequent cause of resistance – insufficient events

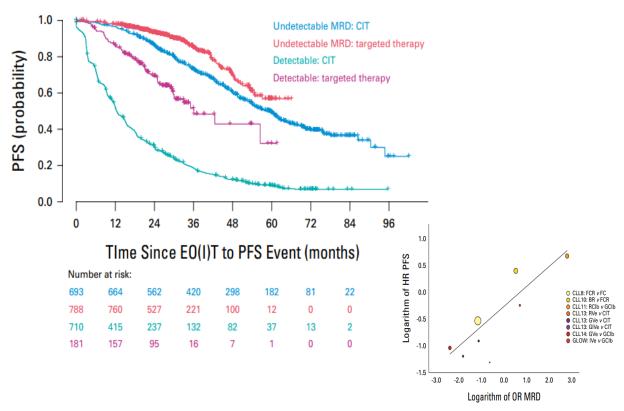
R/R = relapsed/refractory; TN = treatment-naïve. B = bendamustine. I = ibrutinib. R = rituximab.
(1) Kovacs G, et al. *J Clin Oncol*. 2016;34(31):3758-3765 (2) al-Sawaf O, et al. J Clin Oncol. 2021;39(36):4049-4060; (3) Woyach J et al., Blood. 2024 Apr 18;143(16):1616-1627. (4) Stilgenbauer S, et al. *J Clin Oncol*. 2018;36(19):1973-1980.

Meta-Analysis of MRD in CLL: Updated to Included Targeted **Treatments**



Study and Treatment	uMRD	dMRD		Hazaı	d Ratio [95% CI]
MURANO, Ven + Ritux	93	56	-	■	0.28 [0.13, 0.60]
E1912, FCR	37	85	<u> </u>		0.26 [0.09, 0.72]
iLLUMINATE, Chlb + Obinu	29	87	—		0.29 [0.14, 0.62]
iLLUMINATE, lbr + Obinu	43	70		-	0.46 [0.20, 1.07]
HELIOS, Benda + Ritux	18	271		⊢ ≢ ⊣	0.91 [0.47, 1.76]
HELIOS, Ibr + Benda + Ritux	76	213		⊢ ■	0.55 [0.27, 1.15]
CLL-11, Chlb + Obinu	87	144	⊢-	⊣	0.16 [0.08, 0.32]
GENUINE, Ibr + Ubli	27	37		→	0.11 [0.02, 0.49]
GAIA CLL-13, All treated patients	648	184	H	H	0.20 [0.14, 0.30]
GREEN, Benda + Obinu	94	64	⊢	—	0.19 [0.06, 0.58]
GLOW, Chlb + Obinu	18	87	,		0.52 [0.19, 1.38]
GLOW, lbr + Ven	55	51	<u> </u>		0.40 [0.09, 1.77]
RE Model (Q = 25.51, df = 11, p = 0.01;			•	0.32 [0.22, 0.45]	
e 1. Forest plot of hazard ratios in individual studies for PFS			0.02 0.14	 	
			Observed	Outcome	

Figure



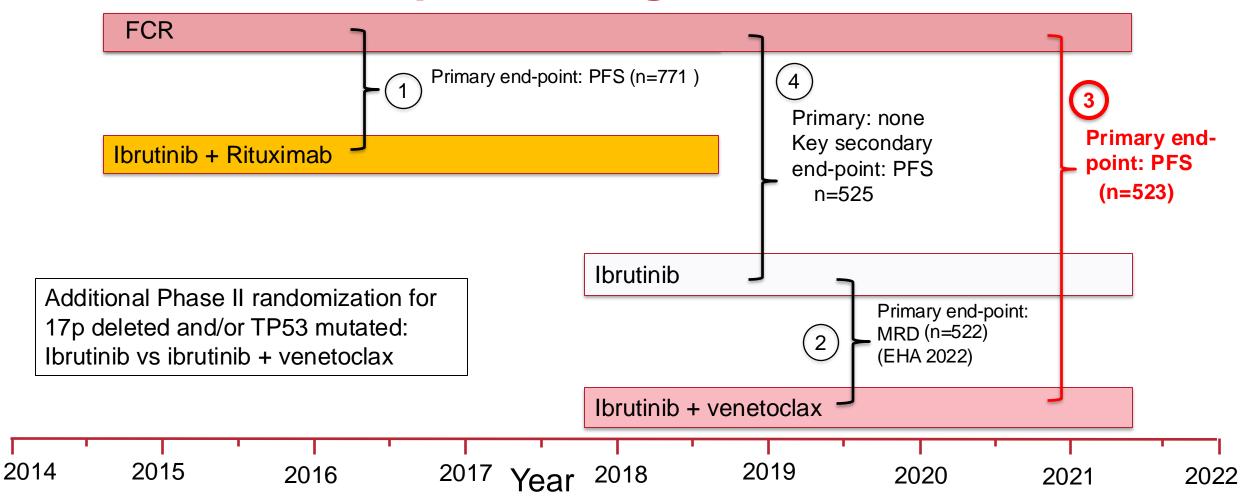
MRD as a Regulatory Endpoint: Lessons from MM

- "MRD-negative CR at 9 or 12 months"
 - Lack of strong trial-level association for MRD and PFS/OS → MRD is not a validated surrogate endpoint
 - Strong individual-level association for MRD and PFS/OS → MRD is prognostic
- Does the evidence support the use of MRD as an accelerated approval endpoint in MM clinical trials? → Vote 12:0 in favor
 - April 12, 2024 Meeting of the Oncologic Drugs Advisory Committee Meeting

PB uMRD4 in CLL trials: patient-level correlation confirmed but while treatment-effect correlation remains uncertain.

MM = multiple myeloma.

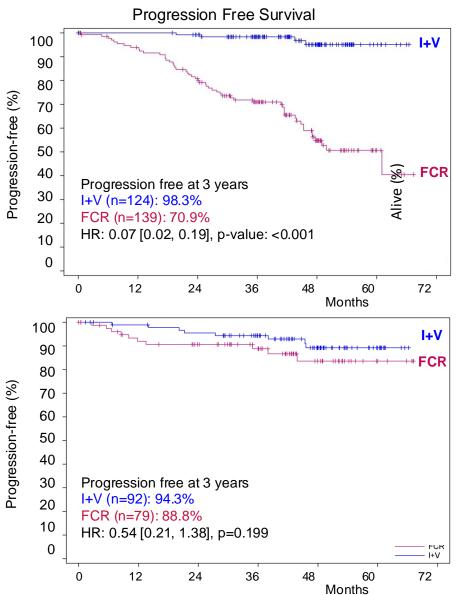
Simon F, et al. J Clin Oncol. 2024:JCO2401192. FDA. Accessed Oct 4, 2024. https://www.fda.gov/advisory-committees/advisory-committee-calendar/april-12-2024-meeting-oncologic-drugs-advisory-committee-meeting-announcement-04122024. al-Sawaf O. et al. J Clin Oncol. 2024:JCO2401192.

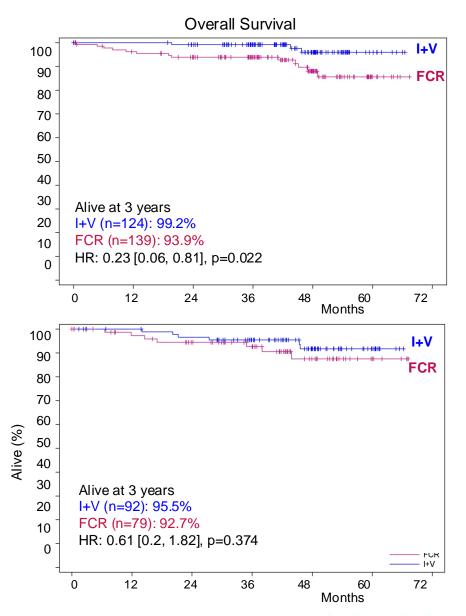


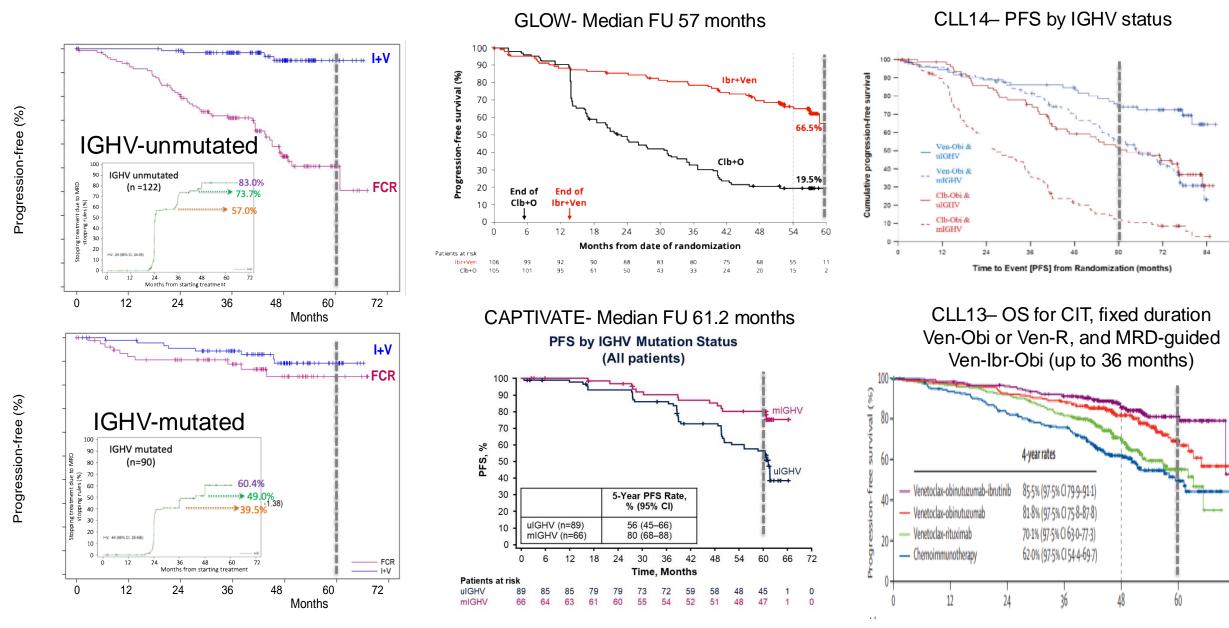
How Should We Be Using MRD Data?

- MRD for response assessment
 - Different thresholds have different implications: Curative time-limited treatment will require eradication below MRD6 / 1 CLL cell per million
 - Biological factors (IGHV) and treatment type affect depth/duration of MRD responses
 - Most trials have MRD as a primary or secondary endpoint. Individual patientlevel data is prognostic and potentially applicable to accelerated drug approval

Adaptive Design of FLAIR



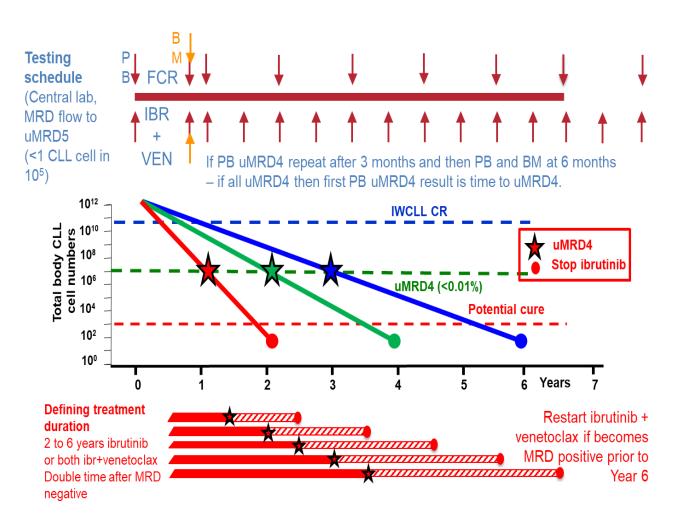



FLAIR: Outcome by IGHV Mutation Status

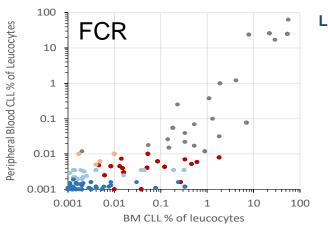
IGHV unmutated (excl. subset 2)

IGHV mutated (excl. subset 2)

Fixed duration I + V

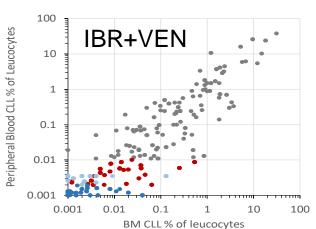

Fixed duration V+O

MRD-driven I + V (FLAIR)


Munir T, et al. *N Engl J Med*. 2024;390(4):326-337. Moreno C, et al. Presented at: ASH 2023; December 10, 2023; San Diego, CA. 634. al-Sawaf O, et al. *Blood*. 2024:blood.2024024631. Wierda WG, et al. *JCO*. 2024;42:7009-7009. Fürstenau M, et al. *Lancet Oncol*. 2024;25(6):744-759.

Stopping Rules for Ibrutinib + Venetoclax in FLAIR

PB uMRD5 (<0.001%) equates to BM uMRD4 (<0.01%) or better across different arms of the FLAIR trial



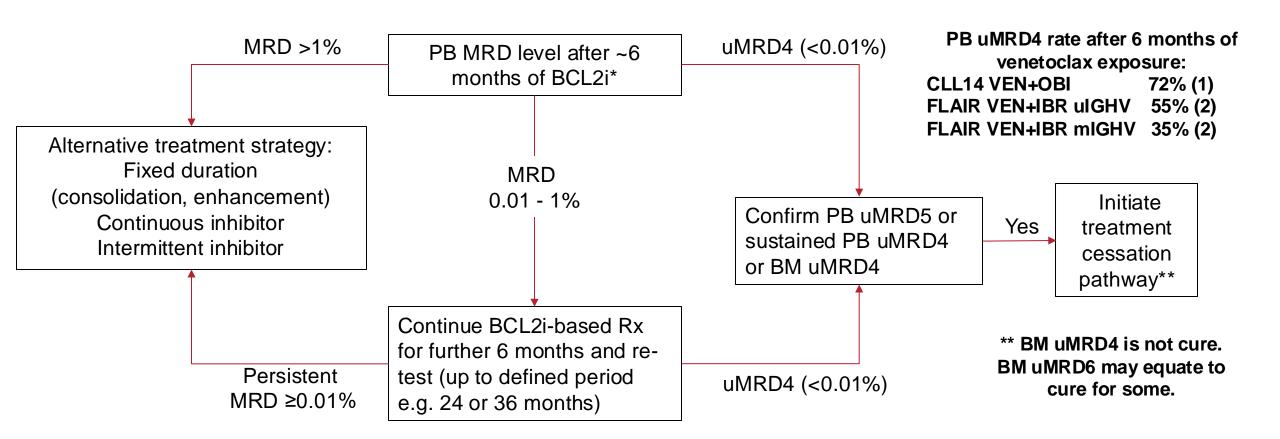
Log difference in BM vs. PB MRD : 0.54 (-0.78 - 2.1)

Proportion with BM uMRD4 (<0.01%):

92% with PB uMRD5 (<0.001%)

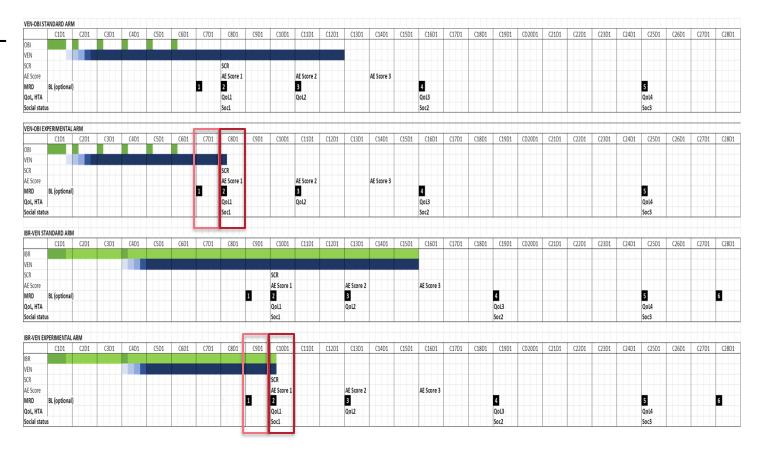
24% with PB dMRD5 (0.001 – 0.01%)

Log difference in BM vs. PB MRD : 0.01 (-1.05 – 1.82)

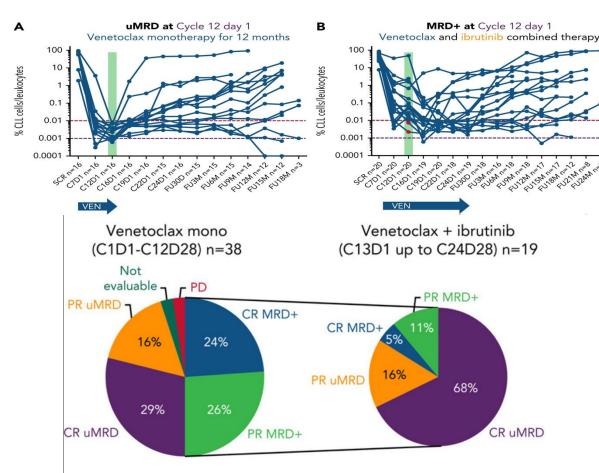

Proportion with BM uMRD4 (<0.01%):

91% with PB uMRD5 (<0.001%)

48% with PB dMRD5 (0.001 – 0.01%)


Possible Pathway for MRD-Guided Treatment with BCL2i-Based Treatment

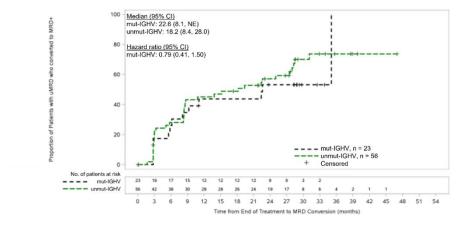
Residual Disease Assessment in Hematologic Malignancies to Improve Patient-Relevant Outcomes across Europe (RESOLVE)


- MRD-driven treatment in CLL and AML
- RESOLVE consortium aimed at establishment of standardized, decentralized MRD analysis across Europe
- CLL Ven-Obi or IBR+Ven: PB uMRD5 randomized to early cessation vs standard duration treatment
- Certification process for RESOLVE centers starting in April 2024
 - Use dry pre-formulated commercially available kits
 - Target decision at MRD5 in the PB

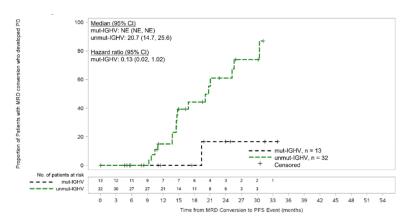
CORDIS EU. Accessed Oct 11, 2024. https://cordis.europa.eu/project/id/101136502. EU CT 2024-512503-39-00 (protocol not yet available on clinicaltrials register.eu). https://ericll.org/project-categories/active #9 Resolve trial: an international, multi-center, randomized, controlled pragmatic clinical trial.

Lymphoma · Leukemia & Myeloma Congress

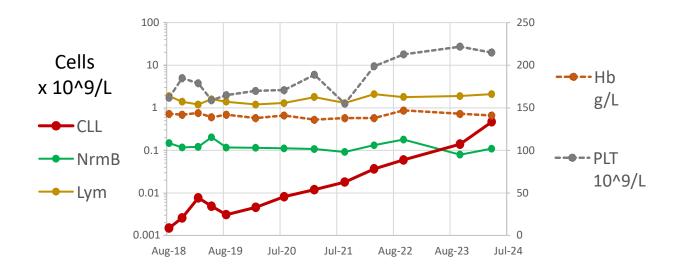
Approaches to Achieve uMRD: Guided Duration, MRD-Driven Enhancement / Consolidation with BCL2i +/- BTK Inhibitors/Degrader +/- anti-CD20/CD19/BiTE



- NCT04758975: Venetoclax, Rituximab and Ibrutinib in TN Patients With CLL Undetectable Minimal Residual Disease (uMRD) (VALUABLE)
- NCT04560322: Venetoclax-Obinutuzumab +/- Acalabrutinib in R/R CLL
- NCT05650723: Zanubrutinib and Venetoclax as Initial Therapy for Chronic Lymphocytic Leukemia (CLL) With Response-based Obinutuzumab
- NCT06367374: MRD Guided Sonrotoclax and Zanubrutinib in Newly Diagnosed CLL/SLL
- NCT05317936: Pirtobrutinib (LOXO-305) Consolidation for MRD Eradication in Patients With Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (CLL) Treated With Venetoclax
- NCT05478512: Front-line VenObi Combination Followed by Ven or VenZan Combination in Patients With Residual Disease: a MRD Tailored Treatment for Young Patients With High-risk CLL (VIS)
- NCT06544785: Zanubrutinib With Obinutuzumab in Untreated Patients With Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

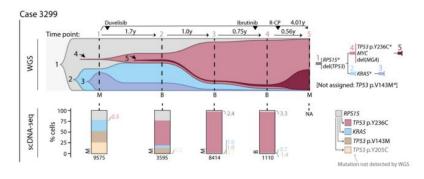

Consolidation/enhanced treatment strategy must balance log depletion, time on treatment, toxicity & duration of treatment break

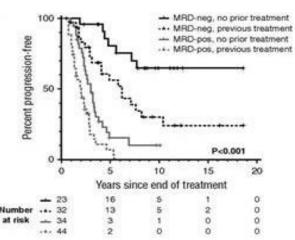
Post-Treatment Monitoring: Typically Several Years from First Detection of MRD until Clinical Progression

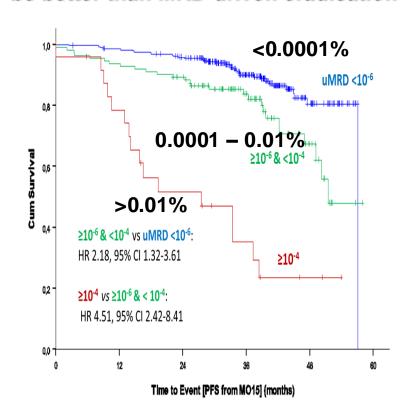

(B) Time from EOT to MRD conversion in patients with uMRD status at EOT

(C) Time from MRD conversion to PFS event

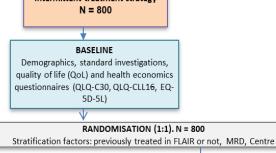
(1) Normal B cells can recover and persist for several years after first detection of residual disease.


How Should We Be Using MRD Data?


- MRD-guided duration of treatment
 - MRD-guided I+V significantly improved PFS and OS in IGHV-unmutated U-CLL and was well tolerated with no unexpected toxicities
 - Sustained PB uMRD4 or single PB uMRD5/uMRD6 can be used as a surrogate for BM uMRD4
 - Multiple approaches to guiding treatment duration / intensity are under investigation
 - Early re-introduction of treatment based on detection of MRD has not been demonstrated to be safe or effective to date


Treatment Strategies Under Evaluation

Frontline MRD-driven disease eradication




MRD-optimized fixed duration targeted treatment: PFS1 + PFS2 may be better than MRD-driven eradication

Disease control with treatment breaks

- uMRD is a key response assessment in clinical trials and is being used more often in routine practice for supportive information
- In the near future we may be able to accelerate the approval of new treatments based on blood MRD responses (pending confirmation of longterm benefit)
- Strategies to optimize the depth of response while minimizing toxicity using MRD to guide treatment are under evaluation

Acknowledgements

Thank you to all patients who participated in the trial along with their families and to research staff at all participating centres.

FLAIR Trial Management Group

Abraham Varghese, Adrian Bloor, Amelia Fisher, Anita Sarma, Andy Rawstron, Bryony Dawkins, David Allsup, David Meads, Gurdeep Sagoo, Lelia Duley, Rachel Chadband, Ruth de Tute, Talha Munir, Peter Hillmen

Haematological Malignancy Diagnostic Service

Andy Rawstron, Surita Dalal, Nichola Webster, Richard Leach, Daniel Payne, Kathryn Turner, Sharon Barrans, Polly Talley, Jane Shingles, Paul Evans, Sarah Render, Rachel Chadband, Roger Owen, Catherine Cargo, Ruth de Tute

UK CLL Biobank

Andrew Pettitt and Melanie Oates

University of Leeds Clinical Trials Research Unit

David Cairns, Aaisha Ali, Alexandra Pitchford, Anna Hockaday, Claire Dimbleby, David Phillips, David Stones, Dena Howard, Diana Mortimer, Doina Levinte, George Blewitt, James Baglin, Jamie Oughton, Julia Brown, Liam Bishop, Matthew Newby,, Natalie Stanton, Natasha Greatorex, Richard Broome, Sharon Jackson, Sonam Yaqub, Sean Girvan, Sue Bell, Charlotte Carter, Michael Tupper, Navjot Gill, Phoebe Brittain, Daya Makanya, Emma McNaught

Members of the independent Data Safety
Monitoring Board and the Trial Steering Committee.
Pharmaceutical Company Support

NCR CLL Subgroup / UKCLL Forum Committee

Piers Patten (Chair), David Allsup, Marc Auckland, Garry Bisshopp, Adrian Bloor, Daniel Catovsky, Kate Cwynarski, Lelia Duley, Andrew Duncombe, Dima El-Sharkawi, Toby Eyre, George Follows, Francesco Forconi, Christopher Fox, John Gribben, Peter Hillmen, Anna Hockaday, Claire Hutchinson, Sunil Iyengar, Parag Jasani, Rosalynd Johnston, Ben Kennedy, Helen Marr, Scott Marshall, Jackie Martin, Nicolas Martinez, Alison McCaig, Helen McCarthy, Tahla Munir, Melanie Oates, Shankara Paneesha, Chris Pepper, Andrew Pettitt, Guy Pratt, Ingo Ringshausen, Anna Schuh, Tatiana Stankovic, Jon Strefford, Renata Walewska, Francesca Yates, Nick York, Moya Young